DOI QR코드

DOI QR Code

Pool Boiling Enhancement of R-123 Using Perforated Plates

다공판을 사용한 R-123 풀비등 열전달 촉진

  • Kim, Nae-Hyun (Div. of Mechanical System Engineering, Incheon Nat'l Univ.)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2015.10.31
  • Accepted : 2016.03.06
  • Published : 2016.05.01

Abstract

In this study, we investigate the pool boiling enhancement caused by perforated plates on top of a smooth surface. We conduct tests using R-123 at atmospheric pressure. It was shown that perforated plates significantly enhanced the pool boiling of the smooth surface. The reason may be attributed to the increased bubble contact area between the plates. The results showed that the enhancement ratio was dependent on the heat flux. At high heat flux, the enhancement ratio increased as the porosity increased. However, at low heat flux, the enhancement ratio decreased as the porosity increased. For the present investigation, the optimum configuration had a pore diameter of 2.0 mm, pore pitch of $2.5mm{\times}5.0mm$ or $5.0mm{\times}5.0mm$, and a gap width of 0.5 mm, which yielded heat-transfer coefficients that are close to those of GEWA-T. The optimum porosity for R-123 was significantly larger than that of water or ethanol. The reason for this may be the large liquid-to-vapor density ratio along with the small latent heat of vaporization of R-123. The perforated plates yielded smaller boiling hysteresis compared with that of the smooth surface.

본 연구에서는 비등표면 위에 다공판을 설치하여 풀비등을 촉진시키는 방안에 대하여 검토하였다. 실험은 대기압에서 R-123을 사용하여 수행되었다. 다공판은 풀비등을 현저히 촉진시켰다. 이는 다공판이 기포를 비등표면 위에 넓게 퍼뜨려 기포와 비등표면 사이 액막의 면적을 증가시키기 때문이다. 또한 높은 열유속에서는 다공도가 클수록, 낮은 열유속에서는 다공도가 작을수록 비등이 촉진되었다. 본 연구에서는 구멍 직경 2.0 mm, 구멍 간격 $2.5mm{\times}5.0mm$ 또는 $5.0mm{\times}5.0mm$, 비등 표면과의 간격 0.5 mm에서 최적 형상이 얻어졌고 이 형상들의 열전달계수는 상용 GEWA-T의 값에 근접하였다. R-123에서의 최적 다공도는 물이나 에탄올에서 보다 현저히 큰데 이는 R-123의 밀도비가 크고 증발잠열은 작기 때문이다. 한편 다공판의 비등이력은 평판보다 작았다.

Keywords

References

  1. Webb, R. L. and Kim, N.-H., 2005, "Principles of Enhanced Heat Transfer," Taylor and Francis Pub.
  2. Thome, J. R., 1990, "Enhanced Boiling Heat Transfer," Hemisphere Pub. Co.
  3. Collier, J. G. and Thome, J. R., 1996, "Convective Boiling and Condensation," Oxford University Press.
  4. Nakayama, W., Daikoku, T. and Nakajima, T., 1982, "Effects of Pore Diameters and System Pressure on Saturated Pool Nucleate Boiling Heat Transfer from Porous Surfaces," J. Heat Transfer, Vol. 104, pp. 286-291. https://doi.org/10.1115/1.3245085
  5. Chien, L.-H. and Webb, R. L., 1998, "A Parametric Study of Nucleate Boiling on Structured Surfaces, Part 1: Effects of Tunnel Dimensions," J. Heat Transfer, Vol. 120, pp. 1042-1048. https://doi.org/10.1115/1.2825888
  6. Chien, L.-H. and Webb, R. L., 1998, "A Parametric Study of Nucleate Boiling on Structured Surfaces, Part II: Effect of Pore Diameter and Pore Pitch," J. Heat Transfer, Vol. 120, pp. 1049-1054. https://doi.org/10.1115/1.2825889
  7. Kim, N.-H. and Choi, K.-K., 2001, "Nucleate Pool Boiling on Structured Enhanced Tubes Having Pores and Connecting Gaps," Int. J. Heat Mass Trans., Vol. 44, pp. 17-28. https://doi.org/10.1016/S0017-9310(00)00096-X
  8. Fan, C.-F. and Yang, C.-Y., 2006, "Pool Boiling of Refrigerants R-134a and R-404A on Porous and Structured Tubes, Part I. Visualization of Bubble Dynamics," J. Enhanced Heat Transfer, Vol. 13, No. 1, pp. 65-83. https://doi.org/10.1615/JEnhHeatTransf.v13.i1.50
  9. Mitrovic, J. and Ustinov, A., 2006, "Nucleate Boiling Heat Transfer on a Tube Provided with a Novel Microstructure," J. Enhanced Heat Transfer, Vol. 13, No. 3, pp. 261-278. https://doi.org/10.1615/JEnhHeatTransf.v13.i3.50
  10. Kim, D.-E., Yu, D.-I., Jerng, D.-W., Kim, M. H. and Ahn, H.-S., 2015, "Review of Boiling Heat Transfer Enhancement on Micro/nanostructured Surfaces," Exp. Thermal Fluid Sci., Vol. 66, pp. 173-196. https://doi.org/10.1016/j.expthermflusci.2015.03.023
  11. Enshen, L., Xin, M. and Chen, Y., 1988, "Pool Boiling Heat Transfer on a ST-PTRB Tube," Advances in Phase Change Heat Transfer, Xin, M., editor, Chongqing, China, pp. 90-97.
  12. Bergles, A. E. and Chyu, M. C., 1982, "Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings," J. Heat Transfer, Vol. 104, pp. 279-285. https://doi.org/10.1115/1.3245084
  13. Kline, S. J. and McClintock, F. A., 1953, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, Vol. 75, pp. 3-9.
  14. Stephan, K. and Abdelsalam, M., 1980, "Heat Transfer Correlations for Natural Convection Boiling," Int. J. Heat Mass Trans., Vol. 23, pp. 73-87. https://doi.org/10.1016/0017-9310(80)90140-4