• 제목/요약/키워드: Latch Mechanism

검색결과 25건 처리시간 0.024초

On the Design of the Latch Mechanism for Wafer Containers in a SMIF Environment

  • Lee, Jyh-Jone;Chen, Dar-Zen;Pai, Wei-Ming;Wu, Tzong-Ming
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2025-2033
    • /
    • 2006
  • This paper presents, the design of a latch mechanism for wafer containers in a standard mechanical interface environment. For an integrated circuits fabrication factory, the standard mechanical interfaced wafer container is an effective tool to prevent wafers from particle contamination during wafer storage, transporting or transferring. The latch mechanism inside the container door is used to latch and further seal the wafer container for safety and air quality. Kinematic characteristics of the mechanism are established by analyzing the required functions of the mechanisms. Based on these characteristics, a methodology for enumerating feasible latch mechanisms is developed. New mechanisms with one degree-of-freedom and up to five links are generated. An optimum design is also identified with respect to the criteria pertinent to the application. The computer-aided simulation is also built to verify the design.

VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계 (A HDD Latch Design Using Electro-magnetic Force of VCM Actuators)

  • 김경호;오동호;신부현;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

초소형 광리스크 드라이브용 관성 래치 설계 (Inertia Latch Design for Micro Optical Disk Drives)

  • 김유성;김경호;유승헌;김수경;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.287-294
    • /
    • 2004
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates striction and wear failure modes associated with CSS. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with sin91e spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

회로차단기 조작기구의 래치 위치 및 길이 최적설계 (Optimum Design of Latch Position and Latch Length on Operating Mechanism of a Circuit Breaker using ADAMS and VisualDOC)

  • 차현경;장진석;유완석;손정현
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1215-1220
    • /
    • 2014
  • 회로차단기에서 가장 중요한 성능은 전기시스템의 이상전류를 신속하게 차단하는 것이다. 이러한 차단시간은 조작기구의 동적 특성에 의한 영향을 받는다. 따라서 회로차단기의 차단시간 단축을 위해서는 조작기구의 최적화가 이루어져야 한다. 본 논문의 가스회로차단기의 조작기는 스프링으로 구동되며 여러 개의 Latch 로 구성되어있다. Latch 들의 상대적 위치와 길이로 정의된 각 설계변수의 차단시간에 대한 영향을 분석하고 이 결과를 통해 설계변수를 선정하여 ADAMS 와 VisualDOC 의 연동을 통해 최적화를 수행하였다. Latch 들의 최적화를 통해 약 22.5% 개극시간을 향상을 확인하였다.

Analysis and optimization research on latch life of control rod drive mechanism based on approximate model

  • Ling, Sitong;Li, Wenqiang;Yu, Tianda;Deng, Qiang;Fu, Guozhong
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4166-4178
    • /
    • 2021
  • The Control Rod Drive Mechanism (CRDM) is an essential part of the reactor, which realizes the start-stop and power adjustment of the reactor by lifting and lowering the control rod assembly. As a moving part in CRDM, the latch directly contacts with the control rod assembly, and the life of latch is closely related to the service life of the reactor. In this paper, the relationship between the life of the latch and the step stress, friction stress, and impact stress in the process of movement is analyzed, and the optimization methodology and process of latch life based on the approximate model are proposed. The design variables that affect the life of the latch are studied through the experimental design, and the optimization objective of design variables based on the latch life is established. Based on this, an approximate model of the life of the latch is built, and the multi-objective optimization of the life of the latch is optimized through the NSGA-II algorithm.

초소형 광디스크 드라이브용 관성 래치 설계 (Inertia Latch Design for Micro Optical Disk Drives)

  • 김경호;김유성;이승엽;유승헌;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1157-1164
    • /
    • 2003
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates stiction and wear failure modes associated with CSS. Other benefits of L/UL include increased areal density due to smooth disk surfaces, thinner overcoats, and lower head flying height Improved shock resistance due to elimination of head slap, and reduced power consumption. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with single spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

  • PDF

CMOS Latch-Up 현상의 실험적 해석 및 그 방지책 (Experimental Analysis and Suppression Method of CMOS Latch-Up Phenomena)

  • 고요환;김충기;경종민
    • 대한전자공학회논문지
    • /
    • 제22권5호
    • /
    • pp.50-56
    • /
    • 1985
  • A common failure mechanism in bulk CMOS integrated circuits is the latch-up of parasitic SCR structure inherent in the bulk CMOS structure. Latch-up triggering and holding charac-teristics have been measured in the test devicrs which include conventional and Schottky-damped CMOS structures with various well depths and n+/p+ spacings. It is demonstrated that Schottky-clamped CMOS is more latch-up immune than conventional bulk CMOS. Finally, the simulation results by circuit simulation program (SPICE) are compared with measured results in order to verify the validity of the latch-up modal composed of nan, pnp transistors and two external resistors.

  • PDF

트렁크 래치의 베이스 플레이트와 접촉스위치의 최적화 (Optimization of Base Plates and Contact Switches in Trunk Latches)

  • 김경남;노유정;김동훈
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.97-104
    • /
    • 2014
  • Automobile trunk latches enable trunks to be opened and closed by a latch mechanism, which can be selectively positioned between a locked condition and an open condition. To maintain structural and electronic performance of the trunk latch, the latch needs to endure impact load that occurs in its open and close motion, and a dynamic mechanism needs to be electronically controled by a contact switch connected with a small DC motor. A base plate, which is the most important component relating to the structural safety, commonly uses a high stiffness material SAPH440-P with high manufacturing cost. In this paper, through structural analysis and optimization, production cost is significantly reduced by replacing SAPH440-P used in some region of the base plate with engineering plastic PBT GF 20%. The optimized contact switch reduces difference between distributed pressures of its two legs, which leads to improve the electronic performance of the trunk latch.

트리즈를 활용한 하드디스크 드라이브 액추에이터 래치 장치의 신뢰성 문제 해결 (The Solution of Reliability Problem for the Actuator Latch Device of Hard Disk Drive Using TRIZ)

  • 정혜성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권3호
    • /
    • pp.147-151
    • /
    • 2014
  • An actuator latch device of a hard disk drive is installed for locking an actuator to hold a magnetic head parked in a parking zone. Applying an external force to the drive, the head can move away from the parking zone and destroy data on the disk. A magnet latching mechanism is used to prevent the actuator from moving when the computer is not in use. A permanent magnet holds the actuator when the head is in the parking zone. When the computer is turned on, the actuator has to overcome the latch magnet in order to move. A stronger latch magnet will hold the actuator adequately, but the actuator will not be released when unlocking is required. A breakthrough solution is needed to improve the reliability of the drive without any deterioration of its performance. In order to obtain the idea for resolving this technical contradiction, we analyse patents for actuator latch device of a hard disk drive. A practical way for solving contradictions in product development using TRIZ is proposed in this paper.

수동형 전개힌지를 이용한 전개형 우주 구조물의 전개 동특성 해석 (Dynamic Analysis of a Deployable Space Structure Using Passive Deployment Mechanism)

  • 최영준;오현웅;최용훈;이경주
    • 한국군사과학기술학회지
    • /
    • 제11권3호
    • /
    • pp.161-168
    • /
    • 2008
  • The deployable space structure is necessary to minimize the satellite volume and launch cost. For the deployment, passive deployment mechanism has widely been used to attenuate a latch shock induced when the structure is just fully deployed. To reduce the latch shock, viscous damper is applied to the passive deployment mechanism and it can control the deployment speed of the structure. In this paper, dynamic analysis of the deployable space structure using the passive deployment mechanism with the viscous damper has been performed. The viscous damping values have been optimized through numerical simulation. The satellite's attitude influenced by pyro activation for the release of the structure has also been investigated.