• Title/Summary/Keyword: Laser-desorption

Search Result 265, Processing Time 0.032 seconds

Screening Analysis of 10 Adrenal Steroids by Matrix-Assisted Laser Desorption Ionization-Tandem Mass Spectrometry

  • Kim, Sun-Ju;Jung, Hyun-Jin;Chung, Bong-Chul;Choi, Man-Ho
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.69-72
    • /
    • 2011
  • Defective synthesis of the steroid hormones by the adrenal cortex has profound effects on human development and homeostasis. Due to the time-consuming chromatography procedure combined with mass spectrometry, the matrix-assisted laser desorption ionization method coupled to the linear ion-trap tandem mass spectrometry (MALDI-LTQ-MS/MS) was developed for quantitative analysis of 10 adrenal steroids in human serum. Although MALDI-MS can be introduced for its applicability as a high-throughput screening method, it has a limitation on reproducibility within and between samples, which renders poor reproducibility for quantification. For quantitative MALDI-MS/MS analysis, the stable-isotope labeled internal standards were used and the conditions of crystallization were tested. The precision and accuracy were 3.1~35.5% and 83.8~138.5%, respectively, when a mixture of 10 mg/mL ${\alpha}$-cyano-4-hydroxycinnamic acid in 0.2% TFA of 70% acetonitrile was used as the MALDI matrix. The limit of quantification ranged from 5 to 340 ng/mL, and the linearity as a correlation coefficient was higher than 0.988 for all analytes in the calibration range. Clinical applications include quantitative analyses of patients with congenital adrenal hyperplasia. The devised MALDI-MS/MS technique could be successfully applied to diagnosis of clinical samples.

Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDITOF MS)

  • Kwak, Hye-Lim;Han, Sun-Kyung;Park, Sunghoon;Park, Si Hong;Shim, Jae-Yong;Oh, Mihwa;Ricke, Steven C.;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1537-1541
    • /
    • 2015
  • Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDITOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis

  • Song, Sun-Mi;Yang, Hyo-Jik;Kim, Jin-Hee;Shin, Seong-Jae;Park, Eun-Hye;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.53-56
    • /
    • 2011
  • [ $C_8$ ]functionalized magnetic nanoparticles were synthesized by coating magnetic $Fe_3O_4$ nanoparticles with silicaamine groups using 3-aminopropyltriethoxysilane and by subsequently modifying the amine groups with chloro(dimethyl)octylsilane to produce octyl groups on the surface of the MNPs. The $C_8$-functionalized MNPs were used to enrich peptides from tryptic protein digests of myoglobin and ${\alpha}$-casein. The enriched peptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS was also used to investigate desalting of the $C_8$-functionalized MNPs. Sample solutions were prepared in 1.0 M NaCl, and the successful removal of salt was observed. Enrichment with $C_8$-functionalized MNPs was very effective for separating and concentrating tryptic peptides.

Identification of Salmonella spp. from porcine salmonellosis by matrix-assisted laser desorption ionization-time of flight mass spectrometry

  • Yang, Hyoung-Seok;Kim, Jae-Hoon
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • A total of 41 Salmonella (S.) strains were isolated from pigs suffered with severe watery diarrhea and were tried to identify by both matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and polymerase chain reaction (PCR) analysis. Fibrinous exudate and ulceration in the large intestine were prevalent in gross observation, and variable degrees of enteritis were observed in the histology of large intestines. Subsequent polymerase chain reaction (PCR) analyses demonstrated that 41 strains were identified as S. Typhimurium (39 strains), though 2 stains were failed to identify. Further identification was performed using both direct smear and protein extraction method by MALDI-TOF MS analyses. In terms of extraction methods, 100% (41/41) of isolates were identified to species level of S. spp. Whereas only 43.9% (18/41) were identified to species level using the direct method. These results thus suggest that rapid and accurate diagnosis of porcine salmonellosis can be guaranteed by MALDI-TOF MS combined with protein extraction method.

Characterization of Poly(ethylene oxide)-b-Poly(L-lactide) Block Copolymer by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Jeongmin Hong;Donghyun Cho;Taihyun Chang;Shim, Woo-Sun;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.341-346
    • /
    • 2003
  • A poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer (PEO-b-PLLA) is characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and a block length distribution map is constructed. Although the MALDI- TOF mass spectrum of PEO-b-PLLA is very complicated, most of the polymer species were identified by isolating the overlapped isotope patterns and by fitting the overlapped peaks to the Schulz-Zimm distribution function. Reconstructed MALDI-TOF MS spectrum was nearly identical to the measured spectrum and this method shows its potential to be developed as an easy and fast analysis method of low molecular weight block copolymers.

Application of multimodal surfaces using amorphous silicon (a-Si) thin film for secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS)

  • Kim, Shin Hye;Lee, Tae Geol;Yoon, Sohee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.384.1-384.1
    • /
    • 2016
  • We reported that amorphous silicon (a-Si) thin film provide sample plate exhibiting a multimodality to measure biomolecules by secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS). Kim et al.1 reported that a-Si thin film were suitable to detect small molecules such as drugs and peptides by SIMS and LDI-MS. Recently, bacterial identification has been required in many fields such as food analysis, veterinary science, ecology, agriculture, and so on.2 Mass spectrometry is emerging for identifying and profiling microbiology samples from its advantageous characters of label-free and shot-time analysis. Five species of bacteria - S. aureus, G. glutamicum, B. kurstaki, B. sphaericus, and B. licheniformis - were sampled for MS analysis without lipid extraction in sample preparation steps. The samples were loaded onto the a-Si thin film with a thickness of 100 nm which did not only considered laser-beam penetration but also surface homogeneity. Mass spectra were recorded in both positive and negative ionization modes for more analytical information. High reproducibility and sensitivity of mass spectra were demonstrated in a mass range up to mass-to-charge ratio(m/z) 1200 by applying the a-Si thin film in mentioned above MS. Principle component analysis (PCA) - a popular statistical analysis widely used in data processing was employed to differentiate between five bacterial species. The PCA results verified that each bacterial species were readily distinguished and differentiated effectively from our MS approach. It shows a new opportunity to rapid bacterial profiling and identification in clinical microbiology. More details will be discussed in the presentation.

  • PDF

Identification of a Marker Protein for Cardiac Ischemia and Reperfusion Injury by Two-Dimensional Gel Electrophoresis and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

  • Lee, Young-Suk;Kim, Na-Ri;Kim, Hyun-Ju;Joo, Hyun;Kim, Young-Nam;Jeong, Dae-Hoon;Cuong, Dang Van;Kim, Eui-Yong;Hur, Dae-Young;Park, Young-Shik;Hong, Yong-Geun;Lee, Sang-Kyung;Chung, Joon-Yong;Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • The purpose of the present study was to evaluate the expression of cardiac marker protein in rabbit cardiac tissue that was exposed to ischemic preconditioning (IPC), or ischemiareperfusion injury (IR) using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). We compared 2DE gels of control (uninjured) cardiac tissue with those of IPC and IR cardiac tissue. Expression of one protein was detected in IR heart tissue, however the protein was not detected in the samples of control and IPC tissue. To further characterize the detected protein molecule, the protein in the 2D gel was isolated and subjected to trypsin digestion, followed by MALDI-MS. The protein was identified as myoglobin, which was confirmed also by Western blot analysis. These results are consistent with previous studies of cardiac markers in ischemic hearts, indicating myoglobin as a suitable marker of myocardial injury. In addition, the present use of multiple techniques indicates that proteomic analysis is an appropriate means to identify cardiac markers in studies of IPC and IR.

Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS. (LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석)

  • Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.814-825
    • /
    • 2008
  • Ascochlorin (ASC) is prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. ASC reduces serum cholesterol and triglyceride levels, and suppresses hypertension, tumor development, ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ASC regulates physiological or pathological events and induces responses in the pharmacological treatment of inflammation, we performed differential analysis of the proteome of the mouse macrophage RAW264.7 cells in response to ASC. In this study, we used a proteomic analysis of LPS-induced RAW264.7 cells treated by ASC, to identify proteins potentially involved in inflammatory processes. The RAW264.7 cell proteomes with and without treatment with ASC were compared using two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and bioinformatics. The largest differences in expression were observed for the calreticulin (4-fold decrease), ${\beta}-actin$ (4-fold decrease) and vimentin (1.5-fold decrease). In addition, rabaptin was increased 3-fold in RAW264.7 cells treated with ASC. The expression of some selected proteins was confirmed by RT-PCR analysis.

Application of Thermal Vapor Deposition Method for MALDI-MS : Molecular Weight Determination of Insoluble Sorbitol Derivatives (열증착 시료 제작법이 적용된 MALDI 질량분석법에 의한 불용성 Sorbitol 유도체의 분자량 결정)

  • 신철민;남해선;김성호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.260-262
    • /
    • 2003
  • A thermal vapor deposition method for crystallization of insoluble analytes with matrix is established as a new sample preparation method for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A mixture of mono, bis and tris(p-ethyl benzylidene) sorbitols was incorporated into microcrystals of ferulic acid, which was confirmed by confocal micrographs. Molecular masses of sorbitol derivatives were determined in this way by MALDI-MS without thermal decomposition.

  • PDF