DOI QR코드

DOI QR Code

Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDITOF MS)

  • Kwak, Hye-Lim (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Han, Sun-Kyung (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Park, Sunghoon (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Park, Si Hong (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Shim, Jae-Yong (Department of Food & Biotechnology, Hankyong National University) ;
  • Oh, Mihwa (National Institute of Animal Science, Rural Development Administration) ;
  • Ricke, Steven C. (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2015.03.20
  • Accepted : 2015.05.24
  • Published : 2015.09.28

Abstract

Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDITOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

Keywords

References

  1. Abu-Ghazaleh BM. 2006. Inhibition of Citrobacter freundii by lactic acid, ascorbic acid, citric acid, Thymus vulgaris extract and NaCl at 31°C and 5°C. Ann. Microbiol. 56: 261-267. https://doi.org/10.1007/BF03175016
  2. Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B. 2010. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res. 9: 3169-3183. https://doi.org/10.1021/pr100047q
  3. Brenner DJ, Grimont PA, Steigerwalt AG, Fanning G, Ageron E, Riddle CF. 1993. Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. Int. J. Syst. Bacteriol. 43: 645-658. https://doi.org/10.1099/00207713-43-4-645
  4. Brenner DJ, O'Hara CM, Grimont PA, Janda JM, Falsen E, Aldova E, et al. 1999. Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies 11). J. Clin. Microbiol. 37: 2619-2624.
  5. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14: 1584-1586. https://doi.org/10.1038/nbt1196-1584
  6. De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 34: 20-29. https://doi.org/10.1016/j.syapm.2010.11.003
  7. Degand N, Carbonnelle E, Dauphin B, Beretti JL, Le Bourgeois M, Sermet-Gaudelus I, et al. 2008. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J. Clin. Microbiol. 46: 3361-3367. https://doi.org/10.1128/JCM.00569-08
  8. Guerrant RL, Dickens MD, Wenzel RP, Kapikian AZ. 1976. Toxigenic bacterial diarrhea: nursery outbreak involving multiple bacterial strains. J. Pediatr. 89: 885-891. https://doi.org/10.1016/S0022-3476(76)80591-4
  9. Han SK, Hong Y, Kwak HL, Kim ES, Kim MJ, Shrivastav A, et al. 2014. Identification of lactic acid bacteria in pork meat and pork meat products using SDS-PAGE, 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. J. Food Saf. 34: 224-232. https://doi.org/10.1111/jfs.12117
  10. Harrigan W, McCance M. 1976. Laboratory Methods in Foods and Dairy Microbiology, pp. 47-49. Academic Press, London, UK.
  11. Kolínská R, Španĕlová P, Dřevínek M, Hrabák J, Žemličková H. 2015. Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry. Folia Microbiol. 60: 53-59. https://doi.org/10.1007/s12223-014-0340-4
  12. Liu MC, Wu CM, Liu YC, Zhao JC, Yang YL, Shen JZ. 2009. Identification, susceptibility, and detection of integron-gene cassettes of Arcanobacterium pyogenes in bovine endometritis. J. Dairy Sci. 92: 3659-3666. https://doi.org/10.3168/jds.2008-1756
  13. Mellmann A, Bimet F, Bizet C, Borovskaya A, Drake R, Eigner U, et al. 2009. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J. Clin. Microbiol. 47: 3732-3734. https://doi.org/10.1128/JCM.00921-09
  14. Moges F, Endris M, Belyhun Y, Worku W. 2014. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia. BMC Res. Notes 7: 215. https://doi.org/10.1186/1756-0500-7-215
  15. Ruiz-Moyano S, Tao N, Underwood MA, Mills DA. 2012. Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Food Microbiol. 30: 432-437. https://doi.org/10.1016/j.fm.2011.12.012
  16. Shalaby AR. 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29: 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X
  17. Ten Brink B, Damink C, Joosten H, In’t Veld JH. 1990. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  18. Van Veen S, Claas E, Kuijper EJ. 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol. 48: 900-907. https://doi.org/10.1128/JCM.02071-09

Cited by

  1. Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01357
  2. MALDI-TOF Mass Spectrometry as a Useful Tool for Identification of Enterococcus spp. from Wild Birds and Differentiation of Closely Related Species vol.27, pp.6, 2015, https://doi.org/10.4014/jmb.1612.12036
  3. Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS vol.28, pp.1, 2015, https://doi.org/10.4014/jmb.1705.05044
  4. MALDI-TOF MS identification of citrobacter youngae isolated from food vol.45, pp.7, 2015, https://doi.org/10.5937/ffr1802107m
  5. Lineage, Antimicrobial Resistance and Virulence of Citrobacter spp vol.9, pp.3, 2015, https://doi.org/10.3390/pathogens9030195
  6. Use of MALDI-TOF for identification and surveillance of gram-negative bacteria in captive wild psittacines vol.82, pp.None, 2022, https://doi.org/10.1590/1519-6984.233523