• Title/Summary/Keyword: Laser-assisted machining

Search Result 61, Processing Time 0.02 seconds

Study on Angle Calculation of Two-axis Manipulator for Laser Assisted Machining (레이저 보조 가공을 위한 2-축 틸팅의 회전각에 대한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.113-117
    • /
    • 2014
  • Laser Assisted Machining (LAM) was often used in process of difficulty-to-cut materials. In previous study, Laser assisted machining was a straight path processing using 1-axis manipulator in laser module. But 1-axis manipulator in laser module was able to process only straight path. So, in this study, laser module in laser assisted machining equipped to 2-axis manipulator. 2-axis manipulator has two motors. First motor is machining direction motor and second motor is Vertical Motor. Machining direction motor rotates in the direction of machining and vertical motor rotates vertical direction in the direction of machining. Machining path of laser assisted machining was considered diagonal path and curved path of laser heat source. This study calculated the 2-axis manipulator's rotation angle in diagonal path and curved path.

Analytical Study of the Determination of Distance between the Laser Heat Source and Tool for Laser-Assisted Machining (레이저보조가공에서 열원과 공구 사이의 거리선정을 위한 해석적 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.699-704
    • /
    • 2015
  • Laser-assisted machining has shown its potential to significantly improve product quality and reduce manufacturing costs; additionally, laser-assisted turning (LAT) and laser-assisted milling (LAM) have been studied by numerous researchers. A research study on the determination of the distance between the laser heat source and the tool for laser-assisted machining, however, has not yet been attempted; we conducted such an analysis by using a finite-element method and heat-transfer equation. The results of this analysis can be used as a reference for the determination of the distance between the laser heat source and the tool for laser-assisted machining.

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

A Study on the Cutting Tool and Holder Deformation Prediction undergoing Laser-assisted Machining with Moving Heat Sources (이동열원을 고려한 레이저 보조가공에서 절삭공구와 홀더의 변형 예측에 관한 연구)

  • Jung, Jae-Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.127-134
    • /
    • 2009
  • Laser-assisted machining uses primarily laser power to heat the local area before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and accuracy with regard to difficult-to-machine materials. The prediction of relative deformations between the cutting tool and workpiece is important to improve the accuracy of machined components. This paper presents the deformation errors caused for a cylindrical workpiece by thermal effects in the laser-assisted machine tool using finite element method. The results can be used to increase the cutting accuracy by compensating thermal distortion prior to laser-assisted machining.

Analysis of Moving Heat Source for Laser Assisted Machining of Plate by Feed Rate Control (이송속도 조절에 의한 평판 레이저 보조가공의 이동 열원해석)

  • Kim, Kwang-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1341-1346
    • /
    • 2011
  • Currently, many researches are carried out for laser assisted machining, which is one of the important fields in materials difficult to process. However, a prediction of heat source is difficult because of moving heat source. In this paper, a thermal analysis of laser assisted machining of plate by change of heat source size is performed, and preheating temperature by adjusting the feed rate is controlled. It was recognized that the maximum preheating temperature increases according to the decrease in heat source size, and feed rate need to adjust as high speed. The results of this analysis can be used as a reference for preheating temperature prediction in laser assisted milling.

A study for prediction of temperature distribution in laser-assisted turning for rod-shaped cast iron (레이저 보조선삭 중 주철환봉 내부의 온도분포 예측에 관한 연구)

  • Kim, Kwan-Woo;Cho, Hae-Yong;Lee, Jae-Hoon;Suh, Jeong;Shin, Dong-Sig
    • Laser Solutions
    • /
    • v.13 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • Laser-assisted machining is dependent on absorbed energy density into workpiece. Generally, the absorptivity of laser beam is dependent on wave length of laser, materials, surface roughness, etc. Various shapes and energy densities for beam irradiation can be used to laser-assisted machining. In this thesis, efficient method of heat source modeling was developed and designed by using one fundamental experimental trials. And then, laser-assisted machining of rod-shaped cast iron was simulated by using commercial FEM code MARC. Simulations and experiments with various conditions were carried out to determine suitable condition of pre-heating for laser-assisted turning process. Temperature distribution of cutting zone could be predicted by simulation.

  • PDF

A Study on Laser-Assisted Machining Process of Silicon Nitride (질화규소의 Laser-Assisted Machining 공정에 관한 연구)

  • Lim, Se-Hwan;Lee, Jae-Hoon;Shin, Dong-Sig;Kim, Jong-Do;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • In this paper, laser-assisted machining(LAM) has been employed to machine hot isostatically pressed (HIPed) Si3N4 work pieces. Due to little residual flaws and porosity, HIPed $Si_3N_4$ work pieces are more difficult to machine compared to normally sintered $Si_3N_4$ workpieces. In LAM, the intense energy of laser was used to enhance machinability by locally heating the workpiece and thus reducing yield strength. In experiments, the laser power ranges from 200W to 800W and the diameter of work pieces is 16mm. While machining, the surface temperature was kept nearly constant by laser heating except for a short period of rise time of max. 58 seconds. Results showed as feed rate increases the surface temperature of $Si_3N_4$ workpieces decreases slightly, whereas the effect of depth of cut is disregardable. With a laser power of 800W, achievable maximal depth of cut as 0.7mm and feed rate was 0.03mm/rev.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (II) - Surface Characteristics of LAM Machined SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (II) - 예열선삭된 SSN 및 HIPSN 질화규소 세라믹의 표면특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.80-85
    • /
    • 2010
  • This study focused on laser assisted machining (LAM) of silicon nitride ceramic that efficiently removes the material through machining of the softened zone by local heating. The effects of laser-assisted machining parameters were studied for cost reduction, and active application in processing of silicon nitride ceramics in this study. Laser assisted machining of silicon nitride allows effective cutting using CBN tool by local heating of the cutting part to the softening temperature of YSiAlON using by the laser beam. When silicon nitride is sufficiently preheated, the surface is oxidized and decomposed and then forms bloating, micro crack and silicate layer, thereby making the cutting process more advantageous. HIPSN and SSN specimens were used to study the machining characteristics. Higher laser power makes severer oxidation and decomposition of both materials. Therefore, HIPSN and SSN specimens were machined more effectively at higher power.

Laser Preheating Method for Three-Dimensional Laser Assisted Milling (3차원 레이저 보조 밀링을 위한 레이저 예열 방법에 관한 연구)

  • Oh, Won-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1031-1037
    • /
    • 2015
  • Laser assisted machining (LAM) is an effective method with which to effectively process difficult-to-cut materials. Simple machining processes, such as turning and linear tool paths, have been studied by many researchers. But, there are few research efforts on LAM workpieces using threedimensional shapes because of difficulties controlling the laser heat on workpieces with inclined angles or curved surfaces. Two methods for machining three-dimensional workpieces are proposed in this paper. The first is that the heat source shape and laser focal length are maintained using an index table. Second, a rotary type laser module is controlled using an algorithm to move the laser heat source in all directions. This algorithm was developed to control the rotary type laser module and the machine tool simultaneously. These methods are verified by a CATIA simulation.

Investigation of the Surface Temperature and Cutting Characteristics of Silicon Nitride in Laser-Assisted Machining (Laser-assisted machining에서 질화규소 시편의 표면온도와 절삭특성에 관한 연구)

  • Im, Se-Hwan;Lee, Je-Hun;Sin, Dong-Sik;Kim, Jong-Do;Kim, Ju-Hyeon
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • In laser-assisted machining (LAM), laser beam is used to locally increase the temperature of a workpiece and thus to enhance the machinability. In order to set the temperature of the material removal area of a workpiece at an optimal value, process parameters, such as laser power, feed rate, and rotational velocity, have to be carefully controlled. In this work, the effects of laser power and feed rate on the temperature distribution of a silicon nitride rotating at a constant velocity were experimentally investigated. Using a pyrometer, temperatures at various locations of the silicon nitride were measured both in circumferential and axial directions. The measured temperatures were fitted to a quadratic equation to approximate the temperature at the cutting location. The machining results showed that cutting force and tool wear were decreased when the temperature at the cutting location was increased.

  • PDF