• Title/Summary/Keyword: Laser-Plasma

Search Result 577, Processing Time 0.027 seconds

Titanium Ions Released from Oral Casting Alloys May Contribute to the Symptom of Burning Mouth Syndrome

  • Park, Yang Mi;Kim, Kyung-Hee;Lee, Sunhee;Jeon, Hye-Mi;Heo, Jun-Young;Ahn, Yong-Woo;Ok, Soo-Min;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.4
    • /
    • pp.102-108
    • /
    • 2017
  • Purpose: Many metal ions released from dental casting alloys have been reported to influence the intraoral symptoms of oral lichen planus (OLP) and burning mouth syndrome (BMS). The aim of this study was to investigate the relationship between salivary metal ion levels and the prosthetic duration as well as to evaluate the time-dependent morbid effects of metal ions in OLP and BMS patients. Methods: Three study groups consist of the following subjects respectively: 17 OLP patients, 12 BMS patients, and 12 patients without oral symptoms. The salivary concentrations of 13 metal ions (copper, cobalt, zinc, chromium, nickel, aluminum, silver, iron, titanium [Ti], platinum, tin, palladium, and gold) were measured by Laser Ablation Microprobe Inductively coupled Plasma Mass Spectrometry. Results: The Ti ions had statistically significant differences among the groups with a prosthetic duration of less than 5 years. There were no significant differences between all ion levels among the groups wearing dental cast alloys for over 5 years. In the BMS group, the level of Ti ions in patients with prosthetic restorations less than 5 years old were significantly high (p<0.05). Conclusions: In the BMS group, 3-60 months during which salivary Ti levels were higher were matched with the duration of burning symptoms ($15.6{\pm}17.1months$). Furthermore, Ti ions were statistically high in the oral cavity of BMS patients fitted with dental casting alloys for 5 years. These results suggest that Ti ions released from dental implants and oral prostheses could attribute to burning sensation of BMS.

Trace Element Compositions and Optically Stimulated Luminescence Characteristics of Sedimentary Quartz (퇴적물 내 석영의 광여기 루미네선스 특성과 미량원소 조성)

  • Jeon, Gi-Young;Choi, Jeong-Heon;Kil, Young-Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.357-365
    • /
    • 2010
  • Optically stimulated luminescence (OSL) of quartz is commonly applied to the age dating of Quaternary sediments. However, one of the issues is that some of the quartz samples are not suitable to OSL dating. Mineralogical analysis of the quartz samples with diverse OSL signals are required to strengthen the reliability and applicability of the OSL dating. We analysed the OSL signal characteristics of sedimentary quartz samples from diverse geological environments and measured their trace element contents using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Quartz samples could be grouped into ones suitable to OSL dating and ones unsuitable on the basis of their OSL signal characteristics. The average trace element contents ranged from 73 to 260 ppm (Al), and from 61 to 248 ppm (Ti) with minor Li, Mg, Cr, Mn, and Fe contents below 40 ppm. We did not find any significant variation of trace element contents of quartz samples consistent with their OSL signal characteristics. This indicates unknown mineralogical factors causing diverse OSL characteristics which should be confirmed by further analysis of sufficient set of samples.

CMOS 소자 응용을 위한 Plasma doping과 Silicide 형성

  • Choe, Jang-Hun;Do, Seung-U;Seo, Yeong-Ho;Lee, Yong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.456-456
    • /
    • 2010
  • CMOS 소자가 서브마이크론($0.1\;{\mu}m$) 이하로 스케일다운 되면서 단채널 효과(short channel effect), 게이트 산화막(gate oxide)의 누설전류(leakage current)의 증가와 높은 직렬저항(series resistance) 등의 문제가 발생한다. CMOS 소자의 구동전류(drive current)를 높이고, 단채널 효과를 줄이기 위한 가장 효율적인 방법은 소스 및 드레인의 얕은 접합(shallow junction) 형성과 직렬 저항을 줄이는 것이다. 플라즈마 도핑 방법은 플라즈마 밀도 컨트롤, 주입 바이어스 전압 조절 등을 통해 저 에너지 이온주입법보다 기판 손상 및 표면 결함의 생성을 억제하면서 고농도로 얕은 접합을 형성할 수 있다. 그리고 얕은 접합을 형성하기 위해 주입된 불순물의 활성화와 확산을 위해 후속 열처리 공정은 높은 온도에서 짧은 시간 열처리하여 불순물 물질의 활성화를 높여주면서 열처리로 인한 접합 깊이를 얕게 해야 한다. 그러나 접합의 깊이가 줄어듦에 따라서 소스 및 드레인의 표면 저항(sheet resistance)과 접촉저항(contact resistance)이 급격하게 증가하는 문제점이 있다. 이러한 표면저항과 접촉저항을 줄이기 위한 방안으로 실리사이드 박막(silicide thin film)을 형성하는 방법이 사용되고 있다. 본 논문에서는 (100) p-type 웨이퍼 He(90 %) 가스로 희석된 $PH_3$(10 %) 가스를 사용하여 플라즈마 도핑을 실시하였다. 10 mTorr의 압력에서 200 W RF 파워를 인가하여 플라즈마를 생성하였고 도핑은 바이어스 전압 -1 kV에서 60 초 동안 실시하였다. 얕은 접합을 형성하기 위한 불순물의 활성화는 ArF(193 nm) excimer laser를 통해 $460\;mJ/cm^2$의 에니지로 열처리를 실시하였다. 그리고 낮은 접촉비저항과 표면저항을 얻기 위해 metal sputter를 통해 TiN/Ti를 $800/400\;{\AA}$ 증착하고 metal RTP를 사용하여 실리사이드 형성 온도를 $650{\sim}800^{\circ}C$까지 60 초 동안 열처리를 실시하여 $TiSi_2$ 박막을 형성하였다. 그리고 $TiSi_2$의 두께를 측정하기 위해 TEM(Transmission Electron Microscopy)을 측정하였다. 화학적 결합상태를 분석하기 위해 XPS(X-ray photoelectronic)와 XRD(X-ray diffraction)를 측정하였다. 접촉비저항, 접촉저항과 표면저항을 분석하기 위해 TLM(Transfer Length Method) 패턴을 제작하여 I-V 특성을 측정하였다. TEM 측정결과 $TiSi_2$의 두께는 약 $580{\AA}$ 정도이고 morphology는 안정적이고 실리사이드 집괴 현상은 발견되지 않았다. XPS와 XRD 분석결과 실리사이드 형성 온도가 $700^{\circ}C$에서 C54 형태의 $TiSi_2$ 박막이 형성되었고 가장 낮은 접촉비저항과 접촉저항 값을 가진다.

  • PDF

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

Cellular Localization and Translocation of Duplication and Alternative Splicing Variants of Olive Flounder Phospholipase C-δ1 (넙치 3가지 타입 인지질가수분해효소(PLC-δ1)의 세포 내 위치 및 이동)

  • Kim, Na Young;Kim, Moo-Sang;Jung, Sung Hee;Kim, Myoung Sug;Cho, Mi Young;Chung, oon Ki;Ahn, Sang Jung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1369-1375
    • /
    • 2017
  • The purpose of this study was to investigate the cellular characterization of phospholipase C-${\delta}1$ in olive flounders (Paralichthys olivaceus). In general, phospholipase C signaling pathways are distributed in nuclei at plasma membranes and in cytoplasms, although the pathways' nuclear localization mechanisms are unclear. P. olivaceus duplicates type-A PoPLC-${\delta}1$ (PoPLC-${\delta}1A$), which has a high similarity to the human isoform PLC-${\delta}$; type-B PoPLC-${\delta}1$ (PoPLC-${\delta}1B$ [Sf]), which has a low similarity to the human isoform PLC-${\delta}$ and the alternative splice variant PoPLC-${\delta}1B$ (Lf), which has a nuclear localization signal (NLS) and a nuclear export signal (NES) for nuclear imports and exports, respectively. This study confirmed the effects of the cellular localization and translocation of GFP-tagged PoPLC-${\delta}1A$, PoPLC-${\delta}1B$ (Sf) and PoPLC-${\delta}1B$ (Lf). It administered treatments of $Ca^{2+}$ ionophore ionomycin and endoplasmic reticulum (ER)-$Ca^{2+}$ pump inhibitor thapsigargin to hirame natural-embryo (HINAE) cells. A laser-scanning confocal microscope was used. GFP-tagged PoPLC-${\delta}1A$ was distributed to the cellular organelles, rather than to the cytoplasms and cytomembranes, when PoPLC-${\delta}1B$ (Lf) and PoPLC-${\delta}1B$ (Sf) were localized at the plasma membranes. The treatments of ionomycin and thapsigargin showed the accumulation of PoPLC-${\delta}1A$ in the nuclei when PoPLC-${\delta}1B$ (Lf) nucleocytoplasmic shuttling and PoPLC-${\delta}1B$ (Sf) nucleocytoplasmic shuttling were not observed. The results were the first evidence that PoPLC-${\delta}1A$, which contains functional, intact NES sequences, has a main role in nucleocytoplasmic shuttling and translocation in fish.

Clinical Benefits and Complications of Cryotherapy in Advanced Lung Cancer with Central Airway Obstruction (중심성 기도 폐쇄를 동반한 폐암에서 냉동치료의 임상적 유용성 및 부작용)

  • Jung, Jin Yong;Lee, Sung Yong;Kim, Dae Hyun;Lee, Kyung Joo;Lee, Eun Joo;Kang, Eun Hae;Jung, Ki Hwan;Kim, Je Hyeong;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.272-277
    • /
    • 2008
  • Background: The efficacy of the use of the interventional bronchoscope for palliation of patients with central airway obstruction has been established. In the palliative setting to alleviate central airway obstruction, the use of laser resection, electrocautery, argon plasma coagulation, photodynamic therapy and cryotherapy can provide relief of an airway obstruction. Cryotherapy is the therapeutic application of extreme cold for the local destruction of living tissue. Recently, this technique has been used for endoscopic management of central airway obstructions in Korea. We report the role and complications of the use of cryotherapy for airway obstructions in patients with advanced lung cancer. Methods: We used a flexible cryoprobe for cryotherapy using nitrous oxide as a cryogen. The cryoprobe was applied through the working channel of a flexible fiberoptic bronchoscope. The temperature of the tip was approximately $-89^{\circ}C$, and the icing time was 5~20 seconds. Results: Four patients with a central airway obstruction from advanced lung cancer were treated with cryotherapy. Three of the four patients were treated successfully and the airway obstruction was improved after the cryotherapy procedure. Dyspnea, hypoxia and atelectais were improved in three cases. Two patients experienced complications- one patient experienced pneumomediastinum and the other patient experienced massive hemoptysis during the cryotherapy procedure. However, these complications resolved and did not influence mortality. Conclusion: This technique is effective and relatively safe for palliation of inoperable advanced lung cancer with a central airway obstruction.

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section (석개재 지역 하부 막골층 탄산염암의 광물조성, 미세구조 및 지화학적 특성)

  • Park, Chaewon;Kim, Ha;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.323-343
    • /
    • 2018
  • This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.