• Title/Summary/Keyword: Laser via

Search Result 345, Processing Time 0.044 seconds

Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-97
    • /
    • 2020
  • Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.

Collective laser-assisted bonding process for 3D TSV integration with NCP

  • Braganca, Wagno Alves Junior;Eom, Yong-Sung;Jang, Keon-Soo;Moon, Seok Hwan;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.396-407
    • /
    • 2019
  • Laser-assisted bonding (LAB) is an advanced technology in which a homogenized laser beam is selectively applied to a chip. Previous researches have demonstrated the feasibility of using a single-tier LAB process for 3D through-silicon via (TSV) integration with nonconductive paste (NCP), where each TSV die is bonded one at a time. A collective LAB process, where several TSV dies can be stacked simultaneously, is developed to improve the productivity while maintaining the reliability of the solder joints. A single-tier LAB process for 3D TSV integration with NCP is introduced for two different values of laser power, namely 100 W and 150 W. For the 100 W case, a maximum of three dies can be collectively stacked, whereas for the 150 W case, a total of six tiers can be simultaneously bonded. For the 100 W case, the intermetallic compound microstructure is a typical Cu-Sn phase system, whereas for the 150 W case, it is asymmetrical owing to a thermogradient across the solder joint. The collective LAB process can be realized through proper design of the bonding parameters such as laser power, time, and number of stacked dies.

The effects of low-level laser therapy in patients with wrist pain: is this Mickey Mouse science?

  • Petrofsky, Jerrold S.;Chung, Wendy;De Fazio, Lesley;Harris, Holly;Laymon, Michael;Lee, Haneul
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Objective: Low level laser treatment (LLLT) is widely used in physical therapy practice. It is combined with physical therapy or LLLT alone. The purpose of this study is to evaluate the effectiveness of LLLT on patients' perception of general wrist pain. Design: Longitudinal study. Methods: Forty-eight subjects with wrist pain who were in the age range of 18-70 years old were examined. The subjects were asked, via an interview and a visual analog scale, to grade their wrist pain. They were asked to rotate their wrists through full range of motion and the angle at which any pain occurred was assessed. Each subject was then exposed to one of the following: 1) treatment with an infrared laser with the power turned off (placebo), 2) treatment with an infrared therapeutic laser, 3) treatment with a red therapeutic laser, 4) treatment with an ultraviolet laser, 5) treatment with a blue laser, 6) treatment with a Mickey Mouse flashlight. The duration of the treatment was 3 sessions in 3 days. Results: The results of the experiments showed that while pain was reduced both immediately after and the next day after laser therapy (p<0.05), there was no significant difference between the laser groups and the placebo group. However, the Mickey Mouse flashlight treatment groups had a greater range of motion than the laser groups (p<0.05). Conclusions: While pain was reduced in all laser groups, it was probably a placebo effect. The Mickey Mouse flashlight group probably received benefit from the heat of the flashlight.

Use of piezoelectric surgery and Er:YAG laser:which one is more effective during impacted third molar surgery?

  • Keyhan, Seied Omid;Fallahi, Hamid Reza;Cheshmi, Behzad;Mokhtari, Sajad;Zandian, Dana;Yousefi, Parisa
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.29.1-29.10
    • /
    • 2019
  • Background: Reduction in postoperative complications is of vital considerations in impacted third molar teeth surgery. The aim of this study was to compare postoperative complications of impacted third molar surgeries for bone removal using laser, piezoelectric equipment, and conventional rotary instruments. Methods: To address the research purpose, the investigator designed the prospective double-blind clinical trial study. The sample size was determined 20 (40 teeth) by sampling formula in any kind of operation. The data of patients were obtained in the different periods in terms of pain, trismus, swelling, ecchymosis, and patient's satisfaction and then analyzed using SPSS 20 software via paired t test and Wilcoxon and McNemar's tests. Results: The pain immediately after surgery and 2 days and 7 days after surgery was higher in the laser group. The swelling immediately after surgery was more in the laser group but not significant. The amount of mouth opening immediately after surgery and 2 days and 7 days after surgery was significantly lower in the laser group than in the piezosurgery group. The total duration of surgery and duration of osteotomy were significantly longer in the laser group. The patient's satisfaction from surgery with piezosurgery was more than that with laser, but this difference was not significant. Conclusion: Due to the rising demand for impacted wisdom tooth surgery, the present study suggests that hard tissue laser surgery and piezosurgery can clear the future of impacted molar surgery, and these approaches are more efficient in reducing postoperative complications compared to the conventional surgeries.

Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample (표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구)

  • Kim, Chang-Hwan;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 2012
  • We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination and X-ray diffraction (XRD) of aluminum plasma ablated by a high-power laser pulse (>1000 mJ/pulse) and oxygen from air. Hence, the formation of laser-supported detonation and combustion processes has been investigated. The essence of this paper is in observing the initiation of chemical reaction between the ablated aluminum plasma and oxygen from air by the high-power laser pulse (>1000 mJ/pulse) and in conducting a quantitative comparison of the chemically reactive laser-initiated waves with the classical detonation of an exploding aluminum (dust) cloud in air. The findings in this work may lead to a new method of initiating detonation from a metal sample in its bulk form without any need to mix nanoparticles with oxygen for initiation.

Corrosion Characteristics of Welding Zones by Laser and TIG Welding of 304 Stainless Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.294-299
    • /
    • 2010
  • Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.

Real Time Monitoring of Ionic Species Generated from Laser-Ablated Pb$(Zr_{0.52}Ti_{0.48})O_3$ Target Using Pulsed-Field Time-Of-Flight Mass spectrometer

  • 최영구;임훙선;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.830-835
    • /
    • 1998
  • The characteristics of the ablation plume generated by 532 nm Nd: YAG laser irradiation of a Pb(Zr0.52Ti0.48)O3 (PZT) target have been investigated using a pulsed-field time-of-flight mass spectrometer (TOFMS). The relative abundance of O+, Ti+, Zr+, Pb+, TiO+, and ZrO+ ions has been measured and discussed. TiO+ and ZrO+ ions were also found to be particularly stable within the laser ablation plasma with respect to PbO+ species. The behavior of the temporal distributions of each ionic species was studied as a function of the delay time between the laser shot and the ion extraction pulse. The most probable velocity of each ablated ion is estimated to be Vmp=1.1-1.6x 105 cm/s at a laser fluence of 1.2 J/cm2, which is typically employed for the thin film deposition of PZT. The TOF distribution of Ti+ and Zr+ ions shows a trimodal distribution with one fast and two slow velocity components. The fast velocity component (6.8x 10' cm/s) appears to consist of directly ablated species via nonthermal process. The second component, originated from the thermal evaporation process, has a characteristic velocity of 1.4-1.6 x 105 cm/s. The slowest component (1.2 x 105 cm/s) is composed of a dissociation product formed from the corresponding oxide ion.

Double Exposure Laser Interference Lithography for Pattern Diversity using Ultraviolet Continuous-Wave Laser

  • Ma, Yong-Won;Park, Jun Han;Yun, Dan Hee;Gwak, Cheongyeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.9-14
    • /
    • 2019
  • The newly discovered properties of periodic nanoscale patterns have increasingly sparked research interests in various fields. Along this direction, it is worth mentioning that there had been rare studies conducted on interference exposure, a method of creating periodic patterns. Additionally, these few studies seemed to validate the existence of only exact quadrangle shapes and dot patterns. This study asserted the formation of wavy patterns associated to using multiple exposures of the ratio of the first exposure intensity to the second exposure intensity. Such patterns were designed and constructed herein via overlapping of two Gaussian beams relative to certain rotation angles, and with a submicron structure fabricated based on a 360-nm continuous-wave laser. Results confirmed that the proposed double exposure laser interference lithography is able to create circular, elliptical and wavy patterns with no need for complex optical components.

Effect of Laser Beam Diameter on the Microstructure and Hardness of 17-4 PH Stainless Steel Additively Manufactured by Direct Energy Deposition (레이저 빔 직경 변화에 따른 17-4 PH 스테인리스 강 DED 적층 조형체의 미세조직 및 경도 변화)

  • Kim, Woo Hyeok;Go, UiJun;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.314-319
    • /
    • 2022
  • The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.