• Title/Summary/Keyword: Laser via

Search Result 345, Processing Time 0.028 seconds

An Image-Based Remote Snow Height Measurement System using a USN (이미지 및 USN 기반 원격 적설량 측정 시스템)

  • Lee, Hyung-Bong;Moon, Jung-Ho;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.76-85
    • /
    • 2011
  • In conventional methods for measuring snow height, a graduated pole is installed on ground in an area of interest and the snow height is manually read from the pole. Recently, automated snow height measurement systems have been introduced to improve the conventional methods. The automated measurement systems, however, are quite expensive since they use the reflection of ultrasonic waves or laser beams. In addition, it is not easy to move the location of the automated measure systems. This paper proposes a snow height measurement system equipped with image sensors and wireless communication capability via a USN and the Internet. The proposed system has a resolution of 5 cm and easy to deploy without difficulties, which can be usefully used to monitor unforseen local snowfalls.

Fabrication of Multilayered Structures in Electrochemical Etching using a Copper Protective Layer (구리 보호층을 이용한 전해에칭에서의 다층구조 제작)

  • Shin, Hong-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.38-43
    • /
    • 2019
  • Electrochemical etching is a popular process to apply metal patterning in various industries. In this study, the electrochemical etching using a patterned copper layer was proposed to fabricate multilayered structures. The process consists of electrodeposition, laser patterning, and electrochemical etching, and a repetition of this process enables the production of multilayered structures. In the fabrication of a multilayered structure, an etch factor that reflects the etched depth and pattern size should be considered. Hence, the etch factor in the electrochemical etching process using the copper layer was calculated. After the repetition process of electrochemical etching using copper layers, the surface characteristics of the workpiece were analyzed by EDS analysis and surface profilometer. As a result, multilayered structures with various shapes were successfully fabricated via electrochemical etching using copper layers.

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

A Case of Lobular Capillary Hemangioma at the False Vocal Cord With Intermittent Stridor

  • Park, Sang-Wook;Cho, Ki Ju;Won, Seongjun;Park, Jung Je
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.3
    • /
    • pp.150-152
    • /
    • 2021
  • Lobular capillary hemangioma (LCH) is a type of benign vascular tumor. It arises from vascular endothelial cells and contains capillaries arranged in a lobular pattern. In the head and neck, the most common presenting location of LCH is the lips, and presentation in the larynx is very rare. LCH might not be distinct from granuloma in macroscopic views. We report a 71-year-old female with LCH of the larynx that was totally resected via laryngeal microsurgery with a CO2 laser and briefly review the literature.

Effects of Transfer Gate on the Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector

  • Jang, Juneyoung;Seo, Sang-Ho;Kong, Jaesung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.12-15
    • /
    • 2022
  • In this study, we studied the effects of transfer gate on the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector. The GBT MOSFET-type photodetector has high sensitivity owing to the amplifying characteristic of the photocurrent generated by light. The transfer gate controls the flow of photocurrent by controlling the barrier to holes, thereby varying the sensitivity of the photodetector. The presented GBT MOSFET-type photodetector using a built-in transfer gate was designed and fabricated via a 0.18-㎛ standard complementary metal-oxide-semiconductor (CMOS) process. Using a laser diode, the photocurrent was measured according to the wavelength of the incident light by adjusting the voltage of the transfer gate. Variable sensitivity of the presented GBT MOSFET-type photodetector was experimentally confirmed by adjusting the transfer gate voltage in the range of 405 nm to 980 nm.

Penile neoplasm associated with Equus caballus papillomavirus type 2 infection in a miniature Appaloosa: a case report

  • Sang-Kyu Lee;Jungho Yoon;Youngjong Kim;Inhyung Lee
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.1
    • /
    • pp.8.1-8.5
    • /
    • 2024
  • An 18-year-old miniature Appaloosa stallion presented with 6 months of history of sanguineous crusts on medial hind limbs and discomfort of micturition. Cauliflower-like and small masses were treated with cryotherapy for 6 months, but the regrowth of masses occurred. Subsequently, local excision via laser and topical treatment with 5% 5-fluorouracil for 5 months were followed. However, the horse was euthanized 4 months later due to regrowth of the masses. The mass was diagnosed as penile papilloma with cellular atypia and Equus caballus papillomavirus type 2 (EcPV-2) DNA was detected. This is the first report of equine penile neoplasm with EcPV-2 infection in Asia.

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

A CDMA Network-based Wireless System for Measuring Lap Time on a Ski Slope (CDMA 망에 기반한 스키장 슬로프의 무선 구간 기록 측정 시스템)

  • Lee, Hyung-Bong;Park, Lae-Jeong;Moon, Jung-Ho;Chung, Tae-Yun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.133-138
    • /
    • 2009
  • This paper introduces a pilot CDMA network-based wireless lap time measurement system set up on a ski slope of Yongpyong Ski Resort. The wireless lap time measurement system is one output of U-Sports Project of Gangwon Province, which is intendended for promoting local strategic business and preparation for hosting 2018 Winter Olympic Games at Pyeongchang. A pair of laser sensors is installed at the entry and exit points of a section requiring lap time measurement on a ski slope. Each laser sensor is connected to a sensor node via wire so that the sensor node can detect the time when a skier enters or exits the section. Also each sensor node is connected to a CDMA network via a modem and receives a standard time from a NTP server. Each node executes the NTP algorithm to synchronize its local time to the received server time. As a result of the time synchronization, the sensor nodes maintain its local time within a resolution of at least 10 miliseconds and transmit the time of detection to a central control center. While the wireless lap time measurement system introduced in the paper does not need expensive measurement equipment, the system allows the central control center to provide lap time records in a more convenient manner compared to conventional manual lap time measuremnt methods.

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.