• Title/Summary/Keyword: Laser via

Search Result 348, Processing Time 0.029 seconds

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

A STUDY ON PERCEPTION METHOD OF THE MARKING LOCATION FOR AN AUTOMATION OF BILLET MARKING PROCESSES

  • Park, Jin-Woo;Yook, Hyun-Ho;Boo, Kwang-Suck;Che, Woo-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1953-1957
    • /
    • 2004
  • The machine vision has been applied to a number of industrial applications for quality control and automations to improve the manufacturing processes. In this paper, the automation system using the machine vision is developed, which is applicable to the marking process in a steel production process line. The working environment is very harsh to workers so that the automatic system in the steel industry is required increasingly. The developed automatic marking system consists of several mechanical and electrical elements such as the laser position detecting sensor system for a structured laser beam which is projected to the billet in order to detect the geometry of the billet. An image processing algorithm has been developed to percept the two center positions of a camera and a billet, respectively, and to align two centers. A series of experiments has been conducted to investigate the performance of the proposed algorithm. The results show that two centers of the camera and the billet could be detected very well and differences between two center positions could be also decreased via the proposed tracking algorithm.

  • PDF

3D Simultaneous Localization and Map Building (SLAM) using a 2D Laser Range Finder based on Vertical/Horizontal Planar Polygons (2차원 레이저 거리계를 이용한 수직/수평 다각평면 기반의 위치인식 및 3차원 지도제작)

  • Lee, Seungeun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1153-1163
    • /
    • 2014
  • An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.

Design and Construction of a Miniature PIV (MPIV) System

  • Olivier Chetelat;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1775-1783
    • /
    • 2001
  • For two decades, there has been an active research to enhance the performances of Particle Image Velocimetry (PIV) systems. However, the resulting systems are somewhat very costly, cumbersome and delicate. In this paper, we address the design and some first experimental results of a PIV system belonging to the opposite paradigm. The Miniature PIV or MPIV system feature relatively modest performances, but is considerably smaller (out MPIV could hold in dia. 40 mm$\times$120 mm), cheaper (out MPIV total cost is less than $500) and easy to handle. Potential applications include industrial velocity sensors. The proposed MPIV system uses a one-chip-only CMOS camera with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC or laptop) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed). In our first MPIV prototype presented in this paper, the strobe lighting is generated by a cheap 5 mW laser pointer diode. Experimental results are presented and discussed.

  • PDF

Vorticity Analysis Associated with Drafting Cylinders for Pneumatic Spinning

  • Bergada J.M.;Valencia E.;Coll Ll
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.146-157
    • /
    • 2006
  • Traditional spinning systems have reached profitability limits in developed countries due to high production costs and low system productivity. Pneumatic spinning is seen as a developing system, because productivity is much higher than conventional systems. This study evaluates one of the main problems to increase productivity in pneumatic spinning, where air mass-flow is dragged by the drafting cylinders. This flow interacts with the incoming fibres deviating them from their expected path. Via laser anemometry, airflow velocity distribution around drafting cylinders has been measured and it has been found that vorticity is created at the cylinder's inlet. Extensive CFD simulation on the air flow dragged by the cylinders has given a clear insight into the vortex created, producing valuable information on how cylinder design affects the vorticity created. Several drafting cylinder designs have been tested without giving any improvement in productivity. However, the use of a drafting cylinder with holes in it produced good results to the problem of air currents, strongly reducing them and therefore allowing a sharp increase in yarn quality, as well as an increase in productivity. An extensive study on vortex kinematics has been undertaken, bringing with it a better understanding of vortex creation, development and breakdown.

The Biologic Effect of Millimeter Wave Irradiation Followed to Photodynamic Therapy on the Tumor

  • Ahn, Jin-Chul;Lee, Chang-Sook;Chang, So-Young;Yoon, Sung-Chul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • Photodynamic therapy consists of a photosensitizer, suitable light source and oxygen. The excitation of the photosensitizer at a cancer mass results in oxidation which would ultimately reduce the mass via apoptosis. Millimeter wave (MMW) therapy has also been known to be effective on cancer cell mass reduction, human cell regeneration and immunity enhancement among the Russian clinicians and scientists. In the present study, the two modalities were combined to achieve synergistic effects while reducing the administration dosage of the photosensitizer, photogem, thus minimizing the side effects. The CT-26 adenocarcinoma cell mass was implanted on mice and the tumors were exposed to a simple MMW irradiation or a combined treatment of MMW and PDT. The treatments continued for 4 weeks and the size of the tumor was measured continuously. The significant therapeutic result of MMW was not found during 4 weeks, preferably more cancer recurrence possibility after MMW irradiation was observed. The results of this study suggest that the combination of MMW irradiation and photodynamic treatment should not be recommended. The result of the MMW treatment alone, however, displayed suppressive effect on cancer cell proliferation for both in vitro and in vivo. The results of the present study suggest that the millimeter wave therapy deserves a further study.

Process Modeling and Optimization for Characteristics of ZnO Thin Films using Neural Networks and Genetic Algorithms (신경망과 유전 알고리즘을 이용한 광소자용 ZnO 박막 특성 공정 모델링 및 최적화)

  • Ko, Young-Don;Kang, Hong-Seong;Jeong, Min-Chang;Lee, Sang-Yeol;Myoung, Jae-Min;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.33-36
    • /
    • 2004
  • The process modeling for the growth rate in pulsed laser deposition(PLD)-grown ZnO thin films is investigated using neural networks(NNets) and the process recipes is optimized via genetic algorithms(GAs). D-optimal design is carried out and the growth rate is characterized by NNets based on the back-propagation(BP) algorithm. GAs is then used to search the desired recipes for the desired growth rate. The statistical analysis is used to verify the fitness of the nonlinear process model. This process modeling and optimization algorithms can explain the characteristics of the desired responses varying with process conditions.

  • PDF

Perception Method of the Marking Location for Automation of Billet Marking Processes (빌릿 마킹 공정의 자동화를 위한 마킹 위치 인식 방법)

  • Park Jin-Woo;Yook Hyunho;Che Wooseong;Boo Kwangsuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.127-134
    • /
    • 2005
  • The machine vision has been applied to a number of industrial applications for quality control and automations to improve the manufacturing processes. In this paper, the automation system using the machine vision is developed, which is applicable to the marking process in a steel production process line. The working environment is very harsh to workers so that the automatic system in the steel industry is required increasingly. The developed automatic marking system consists of several mechanical and electrical elements such as the laser position detecting sensor system fur a structured laser beam which is projected to the billet in order to detect the geometry of the billet. An image processing algorithm has been developed to percept the two center positions of a camera and a billet, respectively, and to align two centers. A series of experiments has been conducted to investigate the performance of the proposed algorithm. The results show that two centers of the camera and the billet could be detected very well and differences between two center positions could be also decreased via the proposed location error decreasing algorithm.

Detection of laser doppler blood flow signal from human teeth

  • Ikawa, M.;Iiyama, M.;Shimauchi, H.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.1-546
    • /
    • 2003
  • Laser doppler flowmeter (LDF) has been applied to the measurement of pulpal blood flow (PBF) in human teeth. As far as we searched, the detection area of the pulp in the blood flow measurement has not been clarified, yet. Therefore, the purpose of this study was to obtain information of the detection area in PBF measurement using LDF. The experiments were performed on the artificial blood circulation in extracted human upper central incisors. The apical portions of examined teeth (n=6) were severed and root canals were enlarged from the apical end to the 2mm incisal to the level of enamel-cement junction. An individual resin cap of each tooth was prepared and a hole was drilled 2mm incisal to enamel-cement junction of the labial side of the cap. The measurement probe of LDF (MBF3D, Moor Instrument, UK) was plugged into the hole of the cap. Heparinized human peripheral blood, which was in advance collected and diluted 3 times with physiological saline, was pumped through the apical foramen of the teeth via a silicone tube and a disposable needle (o.d. 0.7mm) and blood flow signals were monitored. The flux signal significantly increased with the enlargement of the root canal to incisal direction (p<0.01, Friedman analysis). The result indicates that the performance of LDF in PBF with human teeth is limited.

  • PDF

Investigation of Terahertz Generation from Bulk and Periodically Poled LiTaO3 Crystal with a Cherenkov Phase Matching Scheme

  • Li, Zhongyang;Bing, Pibin;Yuan, Sheng;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.297-302
    • /
    • 2015
  • Terahertz (THz) wave generation from bulk and periodically poled $LiTaO_3$ (PPLT) with a Cherenkov phase matching scheme is numerically investigated. It is shown that by using the crystal birefringence of bulk $LiTaO_3$ and a grating vector of PPLT, THz waves can be efficiently generated by difference frequency generation (DFG) with a Cherenkov phase matching scheme. The frequency tuning characteristics of the THz wave via varying wavelength of difference frequency waves, phase matching angle, poling period of PPLT and working temperature are theoretically analyzed. The parametric gain coefficient in the low-loss limit and the absorption coefficient of the THz wave during the DFG process in the vicinity of polariton resonances are numerically analyzed. A THz wave can be efficiently generated by utilizing the giant second order nonlinearities of $LiTaO_3$ in the vicinity of polariton resonances.