• Title/Summary/Keyword: Laser scanning speed

Search Result 193, Processing Time 0.027 seconds

Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology (마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상)

  • 이인환;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Selective Laser Sintering of Cu/Polyamide Mixed Powder (Cu/Polyamide 혼합분말의 선택적 레이저 소결)

  • 박흥일;이길근
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.239-244
    • /
    • 2001
  • To investigate the effect of process parameters on selective laser sintering of Cu/polyamide mixed powder, Cu/polyamide mixed powder was sintered by selective laser with changing laser power and scanning speed. The properties of sintered body were evaluated by measuring the density and tensile strength, and analysis of XRD, FT-Raman and microstructure. With an increase in the laser power, the density and ultimate tensile strength of sintered Cu/polyamide body increase and then decrease. The maximum values of the density and ultimate tensile strength were decreased with increasing laser scanning speed. These changes were concerned with the difference of irradiation energy of laser into the powder layer. It was considered that the change of the mechanical property of the sintered body with irradiation energy of laser is due to the changes of amount of copper particle and property of polyamide.

  • PDF

Laser Processing for Manufacturing Styrofoam Pattern (주물용 스티로폼 목형 제작을 위한 레이저 가공 공정 개발)

  • 강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1085-1088
    • /
    • 2001
  • The process of styrofoam pattern that has been used for material of press die pattern depends chiefly on handwork. Laser manufacturing system developed to increase precision and efficiency of process that is also able to convert the design easily. Applying the RP(rapid prototyping) concept reversely, the unnecessary part of section is vapored away by heat source of laser beam after converting 3-D CAD model into cross-sectional shape information. Laser beam is line-scanned in plane specimens to measure the depth and width of cut, surface roughness, cross-sectional shape as converting laser power, scanning speed, cutting gas pressure. With these basic data, plane surface, inclined surface, hole, outer contour trimming process is experimented and optimum condition are obtained. In plane and inclined surface experiments, 15W laser power and 50mm/s scanning speed make superior processing property and 30W, 10mm/s make processing efficiency increase in trimming process. With these results, simple patterns were manufactured and the possibility of applying laser manufacturing system to styrofoam pattern was convinced.

  • PDF

Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures (레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조)

  • 신용산;손승우;정성호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.

Effect of Laser Scanning Speed on the Laser Direct Patterning of T-shaped Indium Tin Oxide (ITO) Electrode for High Luminous AC Plasma Display Panels (고효율 플라즈마 디스플레이 패널을 위한 T-형 ITO 전극의 레이저 직접 패터닝시 레이저 스캔 속도의 영향)

  • Li, Zhao-Hui;Cho, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-136
    • /
    • 2010
  • Laser direct patterning is one of new methods which are able to replace a conventional photolithography. In order reduce the fabrication cost and to improve the luminous efficiency of AC plasma display panels (PDPs), in this experiment, a Q-switched Nd:$YVO_4$ laser was used to fabricate T-shaped indium tin oxide (ITO) display electrodes. For the laser beam scanning speed from 100 mm/sec to 800 mm/sec, T-shaped ITO patterns were clearly obtained and investigated. The experimental results showed that the optimized T-shaped ITO electrode was obtained when the lasers scanning speed was 300 mm/s.

High Speed Scanner Motor for High Performance Laser Printer (고성능 레이저 프린터용 고속 스캐너모터)

  • Sung, Bu-Ryun;Kim, Sung-Min;Woo, Ki-Myung;Choa, Sung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.829-836
    • /
    • 2000
  • High performance laser printer requires high speed scanning motor, which can operate up to 40,000 rpm. However, development of high speed scanning motor has been restricted due to the practical problems such as use of high speed bearing, compact circuit design and high cost. In this study, we designed a high speed scanner motor for use on laser scanning unit and discussed some design principles including the reduction method of cogging torque of the motor, development of hemispherical aerodynamic bearing, windage loss estimation, and operating circuit design to reduce noise.

  • PDF

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

A Study on Transport Mechanism of the Ultrasonic Transporting System using Laser Scanning Vibrometer (Laser Scanning Vibrometer를 이용한 초음파 이송시스템의 이송 메커니즘에 관한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.841-844
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF