• Title/Summary/Keyword: Laser micro-machining

Search Result 132, Processing Time 0.031 seconds

Fabrication of Fresnel zone plate with femtosecond laser lithography technology (펨토초 레이저 리소그라피 기술을 이용한 Fresnel zone plate 제작 연구)

  • Sohn, I.B.;Noh, Y.C.;Ko, M.J.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.13-16
    • /
    • 2011
  • We fabricated the Fresnel zone plate using femtosecond laser lithography-assisted micro-machining, which is a combined process of nonlinear lithography and wet etching. We investigated the focusing properties by launching a 632.8nm wavelength He-Ne laser beam into the zone plate. The spot size of the primary focal point was $27{\mu}m$ and the intensity of focal point was 0.565W/$cm^2$.

  • PDF

Development of 3D Burr Measurement Technique using Conoscopic Holography (Conoscopic Holography를 이용한 3D Burr 측정기술 개발)

  • 박상욱;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.951-954
    • /
    • 2003
  • Generally, for the burrs formed in machining are irregular and very sharp in shape, it is usually very difficult to measure burr accurately. But, it is proved that precision measurement for micro burr using the conoprobe sensor by conoscopic holography method is possible. We developed 3D burr measurement system using this sensor. The system is composed of Conoscopic laser Sensor, X-Y table, controller and 3D measurement program. Some measurements using the developed system are applied to burrs formed in micro drilling and piercing.

  • PDF

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

Laser microstructuring of trench and its application to optical waveguide (레이저를 이용한 트렌치 제작 및 응용 연구)

  • Choi, Hun-Kook;Yoo, Dongyoon;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Young-Sic;Kim, Su-yong;Kim, Wan-Chun;Kim, Jin-Bong
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this paper, micro trench structure is fabricated by femtosecond laser for inserting optical reflecting wavelength filter in planar waveguide. The width and depth of the trench is controlled by femtosecond laser machining condition. Also, large scale of single channel with 500um and 1000um on silica plate is fabricated by femtosecond laser, and roughness of the channel surface is polished by $CO_2$ laser for the insertion of the filter. Then, the characteristic of the planar waveguide inserted the filter is verified.

Patent and business model analysis of laser micro-machining system (레이저 미세가공 시스템의 특허 및 비즈니스 모델 분석)

  • Kwon, Young-Il;Son, Jong-Ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.437-438
    • /
    • 2018
  • 레이저 미세가공 시스템 관련 특허가 일본과 미국에서 1990년대 초반부터 출원이 증가하였으며, 2014년에 가장 많은 특허가 출원되었다. 이스라엘과 미국 국적의 출원인이 1, 2위를 차지하였으며, 전체 375건의 특허 중 상위 10위 출원인의 특허출원 비율이 약 26%로 분석되었다. 비즈니스 모델 분석에서는 비즈니스 모델의 강점을 강화하고 약점을 보완하는 비즈니스 모델 수행 전략을 도출하였다.

  • PDF

Fabrication of Diffraction Grating Mold Using Dot Pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Young-Un
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps Nd:YVO4 laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application

  • PDF

Fabrication of diffraction grating mold using dot pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Youn-Gun
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.114-117
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Deduction of Optimal Conditions for Acrylic Etching Technique by using CO2 Laser

  • Kim, Hee-Je;Song, Keun-Ju;Park, Sung-Jin;Seo, Hyun-Woong;Kim, Ho-Sung;Choi, Jin-Young;Park, Sung-Joon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.106-111
    • /
    • 2007
  • Laser cutting with the micro-control technique has great potential to be employed for acrylic machining. In this paper, the optimal conditions of acrylic etching have been investigated. The three parameters such as laser power, moving velocity, and thickness of acrylic are experimented to find out optimal conditions. From these experimental results, we have known that it is very important to control accurate power by the TRIAC switching technique. The best condition of acrylic etching is performed 10 Wand 72 mm/sec at the plastic thickness of 1.33 mm. The other case is performed 10 W and 48 mm/sec, and 12 W and 56 mm/sec at the acrylic thickness of 2.00mm, respectively.