• Title/Summary/Keyword: Laser lithography

Search Result 158, Processing Time 0.026 seconds

Construction of Laser Lithography System using Method of Monitoring the Focal Point (초점 모니터 방법을 이용한 레이져 Lithography 장치의 제작과 응용)

  • 이도형
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.222-226
    • /
    • 1990
  • This paper represents the construction of laser beam writing system, laser lithography, using new method that guarantees convenience and accuracy in laser focusing. The X, Y translation stage using DC motors was controlled by the computer. Minimum line width of 1.6${\mu}{\textrm}{m}$ was obtained by the laser lithography system.

  • PDF

Optimization of Laser Lithography Micropatterning Technique based on Taguchi Method (다구찌 방법을 이용한 레이저 리소그라피 미세패턴 가공조건의 최적화)

  • Baek, Nam-Guk;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.59-64
    • /
    • 2002
  • Laser lithography technique is useful for fabricating micro-patterns of silicon wafers. In this work, the laser lithography micromachining technique is optimized based on Taguchi method. Sensitivity analysis was performed using laser scanning speed, laser power level, developing time and mixture ratio between developer and Di-water as the parameters. The results show that for the photoresist used in this work, 70${\mu}m$/s scan speed, 50㎽ laser power, 60sec. developing time and 6: 1 mixture ratio gives the best result. This work shows the effectiveness of laser lithography technique in fabricating patterns with a flew micrometer in width.

Femtosecond Laser Lithography for Maskless PR Patterning (펨토초 레이저를 이용한 미세 PR 패터닝)

  • Sohn, Ik-Bu;Ko, Myeong-Jin;Kim, Young Seop;Noh, Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

Fabrication of Fresnel zone plate with femtosecond laser lithography technology (펨토초 레이저 리소그라피 기술을 이용한 Fresnel zone plate 제작 연구)

  • Sohn, I.B.;Noh, Y.C.;Ko, M.J.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.13-16
    • /
    • 2011
  • We fabricated the Fresnel zone plate using femtosecond laser lithography-assisted micro-machining, which is a combined process of nonlinear lithography and wet etching. We investigated the focusing properties by launching a 632.8nm wavelength He-Ne laser beam into the zone plate. The spot size of the primary focal point was $27{\mu}m$ and the intensity of focal point was 0.565W/$cm^2$.

  • PDF

A study on laser scan path generation for manufacturing 3-dimensional body using StereoLithography (StereoLithography로 3차원 형상가공을 위한 레이저 조사경로 생성에 관한 연구)

  • 안대건;김준안;이석희;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.687-692
    • /
    • 1993
  • This paper deals with the generation of laser scan path for manufacturing 3-dimensional body using StereoLithography. The purpose of this study is to develop one module of the StersoLithography system(SLA) for Rapid Protyping and Manufacturing. AutoCAD system is used to supply CAD information from model. The X-Y controller which was made for a special purpose is used to test this system. The system software developed is composed of 3 main modules, the first module is calculating the boundary point os laser scan path. The scound module is generating final output file which is used to down load on the controller. The result of this study shows a good algorithm to generate laser scan path on the basis of simple mathematical background.

  • PDF

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Parametric Study for a Diffraction Optics Fabrication by Using a Direct Laser Lithographic System (회절광학소자 제작을 위한 레이저 직접 노광기의 공정실험)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.845-850
    • /
    • 2016
  • A direct laser lithography system is widely used to fabricate various types of DOEs (Diffractive Optical Elements) including lenses made as CGH (Computer Generated Hologram). However, a parametric study that uniformly and precisely fabricates the diffractive patterns on a large area (up to $200mm{\times}200mm$) has not yet been reported. In this paper, four parameters (Focal Position Error, Intensity Variation of the Lithographic Beam, Patterning Speed, and Etching Time) were considered for stabilization of the direct laser lithography system, and the experimental results were presented.

Large Area Nanostructure Fabrication by Laser Interference Lithography (레이저 간섭 리소그래피를 이용한 대면적 나노 구조체 제작)

  • Jeong, Il Gyu;Kim, Jongseok;Hahn, Jae Won;Lee, Sung Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • One dimensional and two dimensional nano patterns were fabricated on a 4-inch substrate by Laser Interference Lithography (LIL). Mach-Zehnder interferometer was setup to obtain the interference patterns and adjusted the pattern sizes with change of incident angle. We could obtain a periodic structure with a period of 440 nm using 266 nm laser, and demonstrated a pattern size with $293{\pm}25nm$ over a 4-inch substrate.

Two-dimensional Nano-patterning with Immersion Holographic Lithography (액침 홀로그래픽 리소그래피 기술을 이용한 2 차원 나노패터닝)

  • Kim, Sang-Won;Park, Sin-Jeung;Kang, Shin-Il;Hahn, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.128-134
    • /
    • 2006
  • Two-dimensional nano-patterns are fabricated using immersion holographic lithography. The photoresist layer is exposed to an interference pattern generated by two incident laser beams($\lambda$=441.6 nm, He-Cd laser) of which the pitch size is less than 200 nm. Good surface profiles of the 2 dimensional patterns are achieved by trimming the lithography process parameters, such as, exposure time, developing time and refractive index of medium liquid.