• Title/Summary/Keyword: Laser lens

Search Result 376, Processing Time 0.026 seconds

AN EXPERIMENTAL STUDY ON THE TEMPERATURE CHANGE OF THE PULP CHAMBER INDECED BY THE CO2 LASER IRRADIATION (CO2레이저 조사에 따른 치수강내 온도변화에 관한 실험적 연구)

  • Lee, Jong-Man;Park, Dong-Soo;Lee, Chang-Young;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.43-53
    • /
    • 1984
  • The purpose of this study was to suggest the use of laser energy in the the field of operative dentistry without considerable pulpal damage and significant effects on the dental hard tissue, additionally to find out the methods which could control the temperature rise. The laser beam (CW $CO_2$ laser, output: 6W, beam diameter: 1.5mm) was focused on the center of the occlusal surface of extracted lower molars. A Ge lens (focal length 200mm) was used to focus the primary laser beam. In order to vary the total amount of the same irradiated energy, experimental subjects were devided into three groups: continuously irradiated group, intermittently irradiated group, and water-cooled group after continuous laser irradiation. Temperature changes in the pulp chamber after laser irradiation were measured and recorded by the digital thermometer and recorder. The following results were obtained: 1. Temperatures in the pulp chamber were raised up in the order of the continuously irradiated group, intermittently irradiated group, water-cooled group after continuous laser irradiation. 2. In the continuously irradiated group, the temperature was raised up $1.7^{\circ}C$, $3.8^{\circ}C$, $7.3^{\circ}C$, $17.2^{\circ}C$ after 2, 4, 8, 16 seconds of the irradiation of laser. In the intermittently irradiated group, the changes were $1.2^{\circ}C$, $3.4^{\circ}C$, $6.3^{\circ}C$, $11.1^{\circ}C$, respectively. In the water-cooled group after continuous laser irradiation, the changes were $0.0^{\circ}C$, $0.8^{\circ}C$, $1.6^{\circ}C$, $6.9^{\circ}C$, respectively. 3. The starting time of temperature rise in the pulp chamber had no connection with laser irradiation time.

  • PDF

Usefulness of a 1,064 nm Microlens Array-type, Picosecond-dominant Laser for Pigmented Scars with Improvement of Vancouver Scar Scale

  • Ahn, Kwang Hyeon;Park, Eun Soo;Nam, Seung Min
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • Background and Objectives The picosecond 755 nm alexandrite laser was first approved by the US FDA in 2012. A previous study described the use of a 1,064 nm picosecond laser with a micro-lens array (MLA) in peri-areolar scarring from breast reconstruction surgery and reported significant improvement in the texture and aesthetic appearance of the scar without other wound complications. The purpose of this study was to evaluate the improvement of overall scarring, not just pigmentation, in the picosecond laser treatment of patients with pigmentations. Materials and Methods Sixteen patients who underwent 1,064 nm picosecond laser treatment from June 2016 to December 2018 were enrolled in this study. Patients received two to six sessions of picosecond laser treatment at intervals of 4 weeks. Before and after the laser treatment, the patients evaluated their own satisfaction score and a physician evaluated the Vancouver Scar Scale. To evaluate the satisfaction score and complication rate, a retrospective chart review was done. Results Seven were female and nine were male. The mean of the patients' satisfaction score before the treatment was 1.44 (interquartile range [IQR], 1-2) and 3.00 (IQR 2.25-3.75) six months after treatment. The mean of the Vancouver Scar Scale before the treatment was 9.69 (IQR 8-11), and 6.25 (IQR 5-7.75) six months after treatment. All the results were statistically significant (p<0.01). Conclusion This study provides evidence that the use of a 1,064 nm picosecond laser treatment for pigmented scars can be effective in improving the pigmentation and overall scar status, including vascularity, height, and pliability, with the results of a decrease in the VSS scores between treatments.

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Inspection of combination quality for automobile steel balance weight using laser line projector and USB camera (레이저 선 프로젝터와 USB 카메라를 이용한 자동차용 철 밸런스 웨이트의 결합상태 검사)

  • Choi, Kyung Jin;Park, Se Je;Lim, Ho;Park, Chong Kug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, sensor system and inspection algorithm in order to inspect steel balance weight for automobile is described. Steel balance weight is composed of clip and weight, which is joined by press process. The defective one has a gap between clip and weight. To detect whether there is a gap, sensor system is simply configured with laser line projector and USB camera, which make it possible to measure the height difference of clip and weight area. Laser line pattern which is made on the surface of a balance weight is captured by USB camera. In case that USB camera is used in machine vision, barrel distortion caused by wide angle lens makes the captured image distorted. Image warping function is applied to correct the distortion. Simple image processing algorithm is applied to extract the laser line information and whether it is good or not is judged through the extracted information.

Study on the Development and Sintering Process Characteristics of Powder Bed Fusion System (Powder Bed Fusion 시스템의 개발 및 소결 공정 특성에 관한 연구)

  • An, Young Jin;Bae, Sungwoo;Kim, Dong Soo;Kim, Jae Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.773-779
    • /
    • 2015
  • The laser Powder Bed Fusion (PBF) system is currently recognized as a leading process. Due to the various materials employed such as thermoplastic, metal and ceramic composite powder, the application's use extends to machinery, automobiles, and medical devices. The PBF system's surface quality of prototypes and processing time are significantly affected by several parameters such as laser power, laser beam size, heat temperature and laminate thickness. In order to develop a more elaborate and rapid system, this study developed a new PBF system and sintering process. It contains a 3-axis dynamic focusing scanner system that maintains a uniform laser beam size throughout the system unlike the $f{\theta}$ lens. In this study, experiments were performed to evaluate the effects of various laser scanning parameters and fabricating parameters on the fusion process, in addition to fabricating various 3D objects using a PA-12 starting material.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

Characteristics of High Speed Optical Transmitter Module Fabricated by Using Laser welding Technique (레이저웰딩기술을 이용한 고속 광통신용 송신모듈 제작 및 특성 연구)

  • Kang, Seung-Goo;Song, Min-Kyu;Jang, Dong-Hoon;Pyun, Kwang-Eui
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.552-554
    • /
    • 1995
  • In long-haul high speed optical communications, the distance between a transmitter and a receiver depends on the amount of light coupled to a single mode optical fiber from the laser diode(LD) as well as the LD characteristic itself. And the transmitter module must have long lifetime. high reliability, and even simple structure. Such points have induced laser welding technique to be a first choice in opto-electronic module packaging because it can provide strong weld joint in a short time with very small coupling loss. In this paper, packaging considerations and characteristics for high speed LD modules are discussed. They include optical path design factors for larger aligning tolerance, and novel laser welding processes for component assembly. For low coupling loss after laser welding processes, the optical path for optimum coupling of a single mode optical fiber into the LD chip was designed with the GRIN lens system providing sufficiently large aligning tolerance both in the radial and axial directions. The measured sensitivity of the LD module was better than -33.7dBm(back to back) at a BER of $10^{-10}$ with a 2.5Gbps NRZ $2^{23}-1$ PRBS.

  • PDF

A Study on a Vision Sensor System for Tracking the I-Butt Weld Joints

  • Kim Jae-Woong;Bae Hee-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1856-1863
    • /
    • 2005
  • In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris opening was investigated. Throughout the repeated experiments, the shutter speed was set at 1/1000 second for minimizing the effect of spatters on the image, and therefore the image without the spatter traces could be obtained. Region of interest was defined from the entire image and gray level of the searched laser stripe was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line is within $\pm15^{o}$ from the longitudinal straight line, the system constructed in this study could track the weld line successfully. Since the processing time is no longer than 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.

A Study on the In-process Measurement of Metallic Surface roughness in Cylindrical Grinding by Diode Laser (원통연삭가공시 반도체 레이저 빔을 이용한 금속표면거칠기의 인프로세스 측정)

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.1-8
    • /
    • 1995
  • This paper proposed a simple method for measuring surface roughness of ground surface. utilizing non-contact in-process measuring system using the diode laser. The measurement system is consisted of a laser unit with a diode laser and a cylindrical lens a detecting unit with polygon mirror and CCD array sensor. and a signal processing unit with a computer and device. During operation, this measuring system can provide information on surface roughness in the measuring distance with a single sampling and simultanilusly monitor the state of the grind wheel. The experimental results, showed that the increase of the feed rate and the dressing speed an caused increase in the surface roughness and when the surface roughness is 4Rmax-10Rmax, the cutting speed is 1653m/min-1665m/min. the feed rate is 0.2m/min-0.9m/min, the dressing speed is 0.2mm/rev-0.4mm/rev, the stylus method and the in-process method can be obtained the same results. thus under limited working conditions. using the proposed system. the surface roughness of the ground surface during cylindrical grinding can be obtained through the in-process measurement method using the diode laser.

  • PDF

A Study on the Laser Direct Imaging for FPD ( I ) (평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF