• Title/Summary/Keyword: Laser dose

Search Result 111, Processing Time 0.019 seconds

Effect of Cheonmabanhwa-tang on the Cerebral Hemodynamics in Rats (천마반하탕이 뇌혈류역학에 미치는 영향)

  • Yang Gi Ho;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.194-199
    • /
    • 2004
  • Cheonmabanhwa-tang(CBT) has been used in the Oriental Medicine for many centuries as a therapeutic agent for dizziness due to Poong-Dam. This study was designed to investigate whether CBT has a cytotoxicity in vitro, and affects the cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD), and mean arterial blood pressure(MABP)) in normal and cerebral ischemic rats. The changes of rCBF were determinated by laser-doppler f1owmeter(LDF), and the change of PAD was determinated by video-microscopy. The results in normal rats were as follows: CBT had no cytotoxicity in neuronal cells. CBT significantly increased rCBF. MABP and PAD in a dose-dependent manner, respectively. Both rCBF and PAD were significantly and stably increased by CBT(10 mg/kg, i.p.) during the period of cerebral reperfusion. which contrasted with the findings of rapid and marked increase in control group. In conclusion, it is suggested that CBT causes a diverse effect on cerebral hemodynamics thereby has an anti-ischemic action.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Effects of Samyoo-tang Extract on Pulmonary Artery and Cerebral Blood Flow in Rabbits and Rats (삼요탕이 폐혈관 및 뇌혈류량에 미치는 영향)

  • 이원중;고영철;박병민;신조영;이시형
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.63-73
    • /
    • 2002
  • Objective : This study aimed to investigate the effects Samyoo-tang Extract (SE) on the vascular systems, including changes in blood pressure and regional cerebral blood flow (rCBF), of male Sprague-Dawley rats. Methods : The changes in rCBF were determined by Laser-Doppler flowmetry through the opened cranial method and norepinephrine (NE)-induced blood vessel contractions were determined by physiograph in the pulmonary artery of isolated rabbits. Results and Conclusion : 1. Contractions evoked by NE ($ED_{50}$) were inhibited significantly by SE in the pulmonary artery. 2. SE inhibited the relaxation of NE induced contractions pretreated with propranolol. 3. SE did not inhibit the relaxation of NE induced contractions pretreated with ODQ and L-NNA. 4. Blood pressure was not affected by SE in rats. 5. rCBF was increased by SE in a dose-dependent manner. 6. Pretreatment with propranolol was increased by SE in a dose-dependent manner in blond pressure. 7. Pretreatment with methylene blue, ODQ and L-NNA did not inhibit SE induced increased in rCBF. These results indicate that SE can relax NE-induced contraction of rabbit blood vessels and increased the changes of rCBF in rats, that relate to the sympathetic nerve system.

  • PDF

Effects of Palmul-Tang on the Change of Cerebral Hemodynamics in Rats (팔물탕이 뇌혈류역학 변화에 미치는 효과)

  • Park Cheol Hun;Bae In Tae;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1014-1020
    • /
    • 2004
  • The study was designed to investigate the effects of Palmul-Tang(PMT) on the change of cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD) and mean arterial blood pressure(MABP)] in normal and cerebral ischemic rats. The change of rCBF and MABP were determinated by laser-doppler flowmetry(LDF), and the change of PAD was determinated by video-microscopy. The results in normal rats were as follows ; PMT significantly increased rCBF and PAD in a dose-dependent, and PMT increased MABP in a dose-dependent. This results were suggested that PMT significantly increased rCBF by dilating PAD. The results in cerebral ischemic rats were as follows ; Both rCBF and PAD were significantly and stably increased by PMT(10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. The present authors thought that PMT had an anti-ischemic effect through the improvement of cerebral hemodynamics.

Effect of Cuscutae Semen Extract on Blood Pressure, Regional Cerebral Blood Flow and Pial Arterial Diameter in Rats (토사자가 혈압(血壓), 국소뇌혈류량(局所腦血流量) 및 뇌연막동맥(腦軟膜動脈)에 미치는 영향(影響))

  • Kang Sung-Yong;Kim Kyung-Soo;Kim Kyong-Yoo;Lee In
    • Herbal Formula Science
    • /
    • v.6 no.1
    • /
    • pp.187-197
    • /
    • 1998
  • The study was aimed to investigate the effect cuscutae semen(CS) on the vascular systems including changes in blood pressure (BP), regional cerebral blood flow(rCBF) and pial arteriolar diameter of male Sprague-Dawely rats. The changes in rCBF were determinated by laser-Doppler flowmetry, and the changes in diameter of pial arteriole were measured through a closed crainal window. 1. Blood pressure was not affected by CS in rats. 2. rCBF was increased by CS in a dose-dependent manner. 3. Pretreatment with methylene blue(Img/kg), and propranolol(1mg/kg) significantly inhibited CS induced increased in rCBF. 4. Pretreatment with indomethacin(1mg/kg) did not inhibited CS induced increased in rCBF. 5. Pial arterial diameter was increased by CS in a dose-dependent manner. These results suggest that CS causes a diverse response of blood pressure, regional cerebral blood flow(rCBF), and pial arteral diameter. The increased in rCBF is also mediated by adrenergic ${\beta}-receptor $ and guanylate cyclase.

  • PDF

A Comparative Study of action Mechanism on the Cerebral Hemodynamics by Cheonghunhwadam-tang and Cheonghunhwadam-tang adding Gastrodiae Rhizoma in Rats (청훈화담탕 및 청훈화담탕가천마에 의한 뇌혈류역학의 작용기전에 대한 비교연구)

  • Jeong Hyun Woo;Lee Geum Soo;Yang Gi Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1127-1133
    • /
    • 2002
  • Cheonghunhwadam-tang(CHT) have been used in oriental medicine for many centuries as a therapeutic agent of vertigo by wind, fire and phlegm. CHTGR was CHT adding Gastrodae Rhizoma. The effects of CHTGR on the regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) is not known. A comparative Study of action-mechanism of CHT and CHTGR on the cerebral hemodynamics is not known too. Therefore, purpose of this Study was to investigate effects of CHT and CHTGR on the rCBF and MABP, compare action-mechanism of CHT and CHTGR on the rCBF and MABP. The changes of rCBF and BP was determinated by Laser-Doppler Flowmetry(LDF). The results were as follows ; CHT extract was increased rCBF in a dose-dependent, but was not changed MABP compared with CHT non-treated group. CHTGR extract was decreased rCBF and MABP compared with CHTGR non-treated group in a dose-dependent. Action of CHT is not related with adrenergic β-receptor, cyclooxygenase and guanylate cyclase, but action of CHTGR is related with guanylate cyclase.

Development of Sensitivity-Enhanced Detector using Pixelization of Block Scintillator with 3D Laser Engraving (3차원 레이저 각인으로 블록형 섬광체의 픽셀형화를 통한 민감도 향상 검출기 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.313-318
    • /
    • 2019
  • To improve the sensitivity, a detector using a block scintillator was developed. In the pixelated scintillator, a reflector is located between pixels to move the light generated from the scintillator to the photosensor as much as possible, and sensitivity loss occurs in the reflector portion. In order to improve the sensitivity and to have the characteristics of the pixelated scintillator, the block scintillator was processed into a scintillator in pixel form through three-dimensional laser engraving. The energy spectra and energy resolution of each pixel were measured, and sensitivity analysis of block and pixel scintillator was performed through GATE simulation. The measured global energy resolution was 20.7%, and the sensitivity was 18.5% higher than that of the pixel scintillator. When this detector is applied to imaging devices such as gamma camera and positron emission tomography, it will be possible to shorten the imaging time and reduce the dose of patient by using less radiation source.

GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 정위방사선 치료 시 GafChromic Film을 이용한 선량측정)

  • Han Seung Hee;Cho Byung Chul;Park Suk Won;Oh Do Hoon;Park Hee Chul;Bae Hoon Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate whether a GafChromic film applied to stereotactic radiosurgery with a linear accelerator could provide information on the value for acceptance testing and quality control on the absolute dose and relative dose measurements and/or calculation of treatment planning system. Materials and methods: A spherical acrylic phantom, simulating a patient's head, was constructed from three points. The absolute and relative dose distributions could be measured by inserting a GafChromic film into the phantom. We tested the use of a calibrated GafChromic film (MD-55-2, Nuclear Associate, USA) for measuring the optical density. These measurements were achieved by irradiating the films with a dose of 0-112 Gy employing 6 MV photon. To verify the accuracy of the prescribed dose delivery to a target isocenter using a five arc beams (irradiated in 3 Gy per one beam) setup, calculated by the Linapel planning system the absolute dose and relative dose distribution using a GafChromic film were measured. All the irradiated films were digitized with a Lumiscan 75 laser digitizer and processed with the RIT113 film dosimetry system. Results: We verified the linearity of the Optical Density of a MD-55-2 GafChromic film, and measured the depth dose profile of the beam. The absolute dose delivered to the target was close to the prescribed dose of Linapel within an accuracy for the GafChromic film dosimetry (of $\pm$3$\%$), with a measurement uncertainty of $\pm$1 mm for the 50$\~$90$\%$ isodose lines. Conclusion: Our results have shown that the absolute dose and relative dose distribution curves obtained from a GafChromic film can provide information on the value for acceptance. To conclude the GafChromic flim is a convenient and useful dosimetry tool for linac based radiosurgery.

Experimental Study of Citri Reticulatae Viride Pericarpium extract on the Cerebral Hemodynamics in Rats (청피가 뇌혈류역학에 미치는 실험적 연구)

  • Lee Geum Soo;Jeong Hyun Woo;Lee Won Suk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.104-110
    • /
    • 2002
  • Citri Reticulatae Viride Pericarpium extract(CRVP) have been used in oriental medicine for many centuries as a therapeutic agent for Soothing the liver and regulating the circulation of qi(疏肝理氣), and promoting digestion and removing stagnated food(消積化滯). The effects of CRVP on the vascular system is not known. The purpose of this Study was to investigate the effects of CRVP on the pial arterial diameter and regional cerebral blood flow(rCBF) in normal rats and ischemic cerebrovascular pathologic model rats. The changes in rCBF was determinated by Laser-Doppler Flowmetry(LDF), and the changes in pial arterial diameter were determinated by video microscopy methods and video analyzer. The results were as follows ; 1. Pial arterial diameter was significantly increased by CRVP in a dose-dependent manner. 2. Pretreatment with L-NNA significantly inhibited CRVP induced increased rCBF and pial arterial diameter. 3. Both the methylene chloride fraction and the hexane fraction of CRVP dose-dependently improved the altered cerebral hemodynamics of cerebral ischemic animal by increasing rCBF. 4. Pretreatment with L-NNA and indomethacin significantly inhibited CRVP(MC) induced increased rCBF. 5. Pretreatment with L-NNA and indomethacin significantly inhibited CRVP(hexane) induced increased rCBF. 6. Pretreatment with CRVP maredly stabilized the changes rCBF and pial arterial diameter during the period of cerebral reperusion. In conclusion, CRVP causes a diverse response of rCBF and pial arterial diameter, and CRVP dose-dependently improved the altered cerebral hemodynamics of cerebral ischemic animal by increasing rCBF and pial arterial diameter. These results suggest that the improvement of cerebral hemodynamics is also mediated by nitric oxide synthase and cyclooxygenase.

Development of an easy-to-handle murine model for the characterization of radiation-induced gross and molecular changes in skin

  • Chang, Hsien Pin;Cho, Jae Ho;Lee, Won Jai;Roh, Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.403-410
    • /
    • 2018
  • Background Radiation-induced skin injury is a dose-limiting complication of radiotherapy. To investigate this problem and to develop a framework for making decisions on treatment and dose prescription, a murine model of radiation-induced skin injury was developed. Methods The dorsal skin of the mice was isolated, and irradiation was applied at single doses of 15, 30, and 50 Gy. The mice were followed for 12 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy samples were obtained and subjected to a histological analysis, immunostaining against transforming growth factor beta (TGF-${\beta}$), and Western blotting with Wnt-3 and ${\beta}$-catenin. Increases in the levels of TGF-${\beta}$, Wnt, and ${\beta}$-catenin were detected after irradiation. Results All tested radiation doses caused progressive dermal thickening and fibrosis. The cause of this process, however, may not be radiation alone, as the natural course of wound healing may elicit a similar response. The latent appearance of molecular and histological markers that induce fibrosis in the 15 Gy group without causing apparent gross skin injuries indicates that 15 Gy is an appropriate dose for characterizing the effects of chronic irradiation alone. Thus, this model best mimics the patterns of injury that occur in human subjects. Conclusions This animal model can be used to elucidate the gross and molecular changes that occur in radiation-induced skin injury and provides an effective platform for studying this adverse effect without complicating the process of wound healing.