• 제목/요약/키워드: Laser direct machining

검색결과 28건 처리시간 0.032초

레이저를 이용한 미세에칭에 관한 연구 (A Study on the Argon Laser Assisted Thermochemical Micro Etching)

  • 박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

Thin Film Micromachining Using Femtosecond Laser Photo Patterning of Organic Self-assembled Monolayers

  • Chang Won-Seok;Choi Moo-Jin;Kim Jae-Gu;Cho Sung-Hak;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.13-17
    • /
    • 2006
  • Self-Assembled Monolayers (SAMs) formed by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecules and bio molecules. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAM structure formation.

피코초 레이저를 이용한 회절 격자 금형 개발 (Practical application of picosecond laser micro-machining to the direct fabrication of a diffraction grating mold)

  • 노지환;이제훈;손현기;서정;신동식
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2006
  • Picosecond (ps) laser micro-machining has emerged as an attractive method of fabricating high-precision microstructures, especially in metals. In this paper, a metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate line patterns. In order to minimize the line width, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공 (Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining)

  • 김산하;정도관;김보현;오광환;정성호;주종남
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성 (Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses)

  • 김재구;장원석;조성학;황경현;나석주
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

펨토초 레이저를 이용한 SUS304 의 마이크로 홈가공 (Micro-groove machining of SUS304 using by femto second laser)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1179-1180
    • /
    • 2005
  • 3D micro scaled shapes are fabricated with the method of direct writing and superposing grooving in ambient air using femto-second laser pulses and copper, aiming at establishing an industrially useful femto-second laser processing machine to be able to fabricate three dimensional micro-scale structures, especially micro scaled molds, and processing techniques. For the several advantages, there is no thermally influenced region around the area irradiated by the laser beam and surfaces irradiated laser beam are smooth and substances ablated to form are no attached on the surface of works and so on, the femto-second laser technology is anticipated for advanced micro/nano precision technology.

  • PDF

피코초 레이저를 이용한 회절 격자 금형 개발 (Practical application of picosecond laser micro-machining to the direct fabrication of a diffraction grating mold)

  • 노지환;이제훈;손현기;서정;신동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.487-488
    • /
    • 2006
  • Picosecond (ps) laser micro-machining has emerged as an attractive method of fabricating high-precision microstructures, especially in metals. In this paper, a metallic mold for diffraction gratings is fabricated with a mode-locked 12 Ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate line patterns. In order to minimize the line width, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

레이저 가공 폴리머 마이크로 유체 장치 (Laser Process of Polymer Micro Fluidic Devices)

  • 김주한
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.129-137
    • /
    • 2006
  • Polymer micro-fluidic devices were fabricated with laser processes. A UV laser and a femto laser were used to machine polymer micro-fluidic structures directly. This laser direct machining process suits the need of rapid prototyping, as in many applications changes from the original design are often required. As examples, two polymer micro-systems were developed: a micro-check valve and a micro diffuser pump. The micro fluidic devices can be applied for many applications such as clinical diagnostics and drug delivery. Advantages and disadvantages using polymers as a material for micro-fluidic applications are discussed.

DMLS와 NC복합가공기의 실용성 검토 (Analysis on the practicality and manufacture by DMLS and NC Multiple machines)

  • 문영대
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.34-40
    • /
    • 2015
  • In the study, Three-dimensional drawing parts for conformal cooling circuit cavity & core and their 3D Metal parts using DMLS(Direct MetalLaser Sintering) and NC integrated machining center were showned. For conformal cooling circuit cavity and core parts, I discussed its practicality to DMLS multiple machinins process introducing general manufacturing process and comparing with them.

  • PDF

유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술 (Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers.)

  • 최무진;장원석;김재구;조성학;황경현
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.