• 제목/요약/키워드: Laser accuracy

검색결과 868건 처리시간 0.026초

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.

FIS와 신뢰도를 이용한 레이저 내비게이션의 정밀도 향상 (Accuracy Improvement of Laser Navigation System using FIS and Reliability)

  • 정은국;김정민;정경훈;김성신
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.383-388
    • /
    • 2011
  • 본 논문은 FIS(fuzzy inference system)와 신뢰도를 이용한 레이저 내비게이션의 정밀도 향상에 관한 것이다. 레이저 내비게이션은 무선 유도 장치로써 헤드가 $360^{\circ}$ 회전을 하며 벽에 부착된 반사체(reflector)를 읽어 AGV(automatic guided vehicle)의 위치를 측정하는 장치이다. 기존의 대표적인 유도 장치들의 타입은 유선 유도 방식이다. 이들은 정밀도가 매우 높고 반응속도가 빠르기 때문에 대부분의 현장에서는 이들을 채택하고 있다. 하지만, 이들 센서는 바닥 밑 1인치 안에 설치하거나 바닥에 심어야하기 때문에 설치비용은 매우 높고 유지 보수가 어렵다. 이러한 문제를 해결하기 위해서 레이저 내비게이션이 개발되었다. 이것은 바닥 시공 하는 것이 필요 없고 설치비용이 최소화되며 배치(layout) 변경이 쉽다. 하지만 외란에 영향을 많이 받아 데이터의 손실 손상이 크고 반응속도가 느리기 때문에 안전이 최우선인 산업현장에 사용이 어렵다. 이에 본 논문에서는 레이저 내비게이션의 정밀도 향상에 관한 연구를 하였다. 제안된 방법은 레이저 내비게이션의 특성을 분석하여 FIS를 통해 위치측정 정밀도의 신뢰도를 계산한 후에 이를 통해 레이저 내비게이션의 정밀도를 보정하는 방법이다. 본 논문에서는 실험을 위해서 직접 설계한 AGV를 이용하였으며, 레이저 내비게이션의 위치와 레이저 내비게이션의 신뢰도를 통해 보정된 위치를 제안된 방법과 비교 하였다. 실험 결과, FIS를 신뢰도로 보정한 결과가 다른 방법들에 비해 약 50% 성능이 향상됨을 확인하였다.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석 (Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station)

  • 양인태;신문승;이성구;신명섭
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Accuracy Assessment of Mobile Mapping System

  • Manandhar, Dinesh;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1152-1154
    • /
    • 2003
  • The needs of 3-D data have been increasing for various applications like visualization, 3-D modeling, planning and management as well as entertainment. Mobile mapping has become a quick and practical means for acquiring necessary 3-D data for above-mentioned applications. A mobile mapping system mainly consists of two main components, viz. data acquisition devices and positioning devices. The data acquisition devices consist of CCD cameras or/and laser scanners. The positioning devices consist of GPS, INS, Odometer (shaft encoder) and some other referencing devices. The overall accuracy of mobile mapping system depends on the accuracy of positioning devices and their integrated output. Though, GPS is the main input device for the position information, the signal is not available for the computation of position all the times in urban area. The GPS satellites are normally obstructed by high-rise buildings. Thus it is very important to understand the accuracy of such a system in different environments and means to solve such problems. We have developed a mobile mapping system called VLMS (Vehicle-borne Laser Mapping System), which consists of CCD Cameras, Laser scanners, GPS, INS and Odometer. In this paper, we will present and discuss the accuracy of this system with data acquired in different environments (open area, urban area, tunnel, express way etc) by analyzing the data with respect to other existing digital data.

  • PDF

레이저 비전을 이용한 3차원 측정 시스템 구현 (Development of a 3-Dimensional Measurement System using Laser Vision)

  • 권효근;천영석;서영수;노영식
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.973-979
    • /
    • 2007
  • A laser vision system is developed to measure the three-dimensional feature of an object. This system consists of two low cost cameras and a cross laser. One camera and a cross laser are used to measure a plane equation of an object. Using this information, the other camera measures a hole size of an object. The proposed system provides 0.05 mm accuracy measurement systems with relatively low cost.

점군데이터 정합 방법에 따른 정확도 평가 (Accuracy Evaluation by Point Cloud Data Registration Method)

  • 박준규;엄대용
    • 한국측량학회지
    • /
    • 제38권1호
    • /
    • pp.35-41
    • /
    • 2020
  • 3D 레이저 스캐너는 대상물에 대한 많은 양의 데이터를 빠른 시간 내에 취득할 수 있는 효과적인 방법으로 최근 측량, 변위측정, 대상물의 3차원 데이터 생성, 실내공간정보 구축, BIM (Building Information Model) 등 다양한 분야에 활용되고 있다. 3D 레이저 스캐너를 통해 취득되는 점군데이터의 활용을 위해서는 정합과정을 거쳐 많은 측점에서 취득한 데이터를 통일된 좌표체계를 가진 하나의 데이터로 만드는 과정이 필요하다. 따라서 정합 방법에 따른 점군데이터의 정확도에 대한 분석적 연구가 필요하다 이에 본 연구에서는 3D 레이저 스캐너를 통해 취득되는 점군데이터의 정합방법에 따른 정확도를 분석하고자 하였다. 3D 레이저 스캐너를 통해 연구대상지의 점군데이터를 취득하고, 자료처리를 통해 ICP (Iterative Closest Point) 와 형상정합 방법에 의해 점군데이터를 정합하였으며, 토털스테이션 측량성과와 비교하여 정확도를 분석하였다. 정확도 평가 결과 ICP와 형상정합 방법은 각각 토털스테이션 성과와 0.002~0.005m, 0.002~0.009m의 차이를 나타내었다. 각각의 정합 방법은 실험결과 모두 0.01m 미만의 편차를 나타내어 1:1,000 수치지형도의 허용정확도를 만족하였으며, ICP 및 형상정합을 이용한 점군데이터의 정합이 공간정보 구축에 충분히 활용 가능함을 제시하였다. 향후 형상정합 방법에 의한 점군데이터의 정합은 3D 레이저 스캐너를 활용한 공간정보 구축 과정에서 타겟의 설치를 줄임으로써 생산성 향상에 기여할 것이다.

레이저 간섭장치를 이용한 높이마이크로미터 교정장치의 개발 (Development of height micrometer calibration system by using laser interferometer)

  • 엄태봉;양상희;우인후;임재선;정명세
    • 한국정밀공학회지
    • /
    • 제5권3호
    • /
    • pp.43-47
    • /
    • 1988
  • Height micrometer is a kind of end standards. It consists of a stack of gage blocks which is capable of moving up and down by a micrometer head. Height micrometer requires calibration with very high accuracy because its resolution is generally 1 .mu. m and its accuracy is higher than few micro- meters. Conventionally, comparison with gage blocks is used to calibrate height micrometer, but it is less accurate and time consuming method. A height micrometer calibration system using a laser interferometer instead of gage blocks has been developed. The measuring range of the system is 300mm, and the accuracy is better than ${\pm}0.5{\mu}m$ A new method of maintaining the laser-beam alignment is described as well.

  • PDF

The simulation for error analysis of a large scale laser digitizer system

  • Fujimoto, Ikumatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.440-445
    • /
    • 1993
  • A two dimensional large scale laser digitizer with a cordless cursor was developed. The coordinate detecting scheme of this digitizer is fundamentally based on the triangulation method, in which two laser-rays are scanned by the rotating plane mirros, reflected backward by the cursor, reflected again by the rotating mirrors, and detected by optical sensors. From angles in which the cursor reflections are detected, we can determine the position of the cursor. But this method involves several problems about optical alignment and its calibration especially when it is applied to a large scale digitizer. In this paper, especially we propose simulation for error analysis with connection to angles measured at five control points which are needed to decide an appropriate model for calculating coordinates and optimal simulation for deciding the position of five control points to give the better coordinate accuracy. In this way, we realized the on-site calibration and on-site insurance of measurement accuracy with our appropriate model for calculating coordinates. The time required for on-site calibration is within 5 minutes and the average accuracy of 4m * 3m digitizer is about .+-.0.12mm.

마이크로광조형법을 이용한 미세삼차원구조물의 제조공정 중 형상정밀도 및 경화특성에 관한 연구 (Shape accuracy and curing characteristics of photopolymer during fabrication of three-dimensional microstructures using microstereolithography)

  • 정대준;김성훈;정성호
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.46-50
    • /
    • 2004
  • The curing characteristics of a liquid photopolymer during microstereolithography and the shape accuracy of thereby fabricated microstructures were investigated experimentally. A He-Cd laser with a wavelength of 442nm and a photopolymer consisted of a commercial resin from SK chemical and a photoinitiat or were used for the experiment. By varying the laser beam power and scanning speed of the focused laser beam, minimum curing thickness of 50 ${\mu}ㅡ$ was obtained. The distortion of solidified structure due to adhesion force was measured and the optimum fabrication conditions were determined. Also, the feasibility of direct fabrication of three-dimensional microstructures by Super IH process was examined.