• Title/Summary/Keyword: Laser accuracy

Search Result 868, Processing Time 0.025 seconds

Laser Micro-machining Process-monitoring Technologies (레이저 미세가공 공정 요소 모니터링 기술)

  • Sohn, Hyon-Kee;Lee, Jae-Hoon;Hahn, Jae-Won;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • In order to achieve and maintain dimensional accuracy in laser micro-machining, dominant parameters such as laser power and laser focus position need to be monitored and controlled real time. Also, in order to selectively machine multi-layered materials, the material being presently machined need to be recognized. This paper presents an auto-focusing (AF) module to keep laser focus on a large-area surface; a real-time laser power stabilizing module based on optical attenuation; and a laser-induced breakdown spectroscopy (LIBS) module. With these monitoring modules, position error in laser focus on a 4" silicon wafer was kept below $4{\mu}m$, initially $51{\mu}m$, and laser power stability of a UV laser source was improved from 1.6% to 0.3%. Also, the material transition from polyimide to copper in machining of FCCL (flexible copper clad laminate) was successfully observed.

Fabrication of Micro Conductor Pattern on Polymer Material by Laser Induced Surface Activation Technology

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.327-332
    • /
    • 2020
  • Laser induced surface activation (LISA) technology requires refined selection of process variables to fabricate conductive microcircuits on a general polymer material. Among the process variables, laser mode is one of the crucial factors to make a reliable conductor pattern. Here we compare the continuous wave (CW) laser mode with the pulse wave (PW) laser mode through determination of the surface roughness and circuit accuracy. In the CW laser mode, the surface roughness is pronounced during the implementation of the conductive circuit, which results in uneven plating. In the PW laser mode, the surface is relatively smooth and uniform, and the formed conductive circuit layer has few defects with excellent adhesion to the polymer material. As a result of a change of laser mode from CW to PW, the value of Ra of the polymer material decreases from 0.6 ㎛ to 0.2 ㎛; the value of Ra after the plating process decreases from 0.8 ㎛ to 0.4 ㎛, and a tight bonding force between the polymer source material and the conductive copper plating layer is achieved. In conclusion, this study shows that the PW laser process yields an excellent conductive circuit on a polymeric material.

On a new laser digitizer system

  • Fujimoto, Ikumatsu;Takahashi, Daisuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1646-1648
    • /
    • 1991
  • new system of a two dimensional large scale laser digitizer with a cordless cursor is proposed-it provides an easiness of setting devices and a high accuracy of measurement.

  • PDF

Performance evaluation of Terrestrial Laser Scanner over Calibration Baseline (표준거리측정 시설을 이용한 지상라이다 성능 평가)

  • Lee, In-Su;Lee, Jae-One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2010
  • This study deals with the measurement of reflectivity as well as the distance accuracy with Terrestrial Laser Scanner(TLS) using time of flight methods and near infrared wave length, for a variety of user-made targets. Especially, point clouds' reflection to several targets was measured with Gretag Macbeth il spectrophotometer in the office. And the distance accuracy in comparison to reference distance for TLS performance evaluation, was tested after scanning the user-made targets and measuring the inter-pillars distances over the precise EDM calibration baseline. The results of test was shown that except white resin objects, with approx. 10m and 170m inter-pillar distances, other targets achieved the distance accuracy of several millimeters(mm) with respect to standard distances. Future work should be concentrate on a few parameters influencing on the distance accuracy such as atmospheric correction, instrument correction, the additive constant or zero/index correction, etc.

A study on the generation of Road DEM with high accuracy using Laser scanning data (레이저 스캐닝 데이터를 이용한 정밀 도로 수치표고모델 제작에 관한 연구)

  • 김준철;박수영;윤여상;주영은;최종현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.245-250
    • /
    • 2003
  • Digital Elevation Model(DEM) is basic spatial information used in various GIS areas such as spatial analysis, 3D modeling, etc. In particular, DEM of road inclined plane is need for the plan, design, construction and maintenance of social infrastructures such as roads and bridges in construction technology, one of GIS application. However, generating DEM of road inclined plane with high accuracy is very difficult. Therefore, the purpose of this study is to propose how to generate road DEM with high accuracy through extracting road inclined plane automatically using Laser scanning data.

  • PDF

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine (초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구)

  • Lim, Sang-Heon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

Development of Computer Aided Measurement and Compensation System for Linear Pitch Error Correction in CNC Machine Tools Implementing a New Optimal Correction Algorithm (CNC 공작기계 선형피치오차의 최적 보정알고리즘을 구현하는 자동 측정 및 보정 시스템의 개발)

  • 이석원;박희재;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • Linear displacement accuracy is one of the most important factors that determine machine tool accuracy The laser interferometer has been usually recommended for the measurement of linear displacement accuracy. In this paper, microcomputer aided measurement and compensation system has been developed for the pitch error in a CNC machine tool. For accurate pitch error calculation. the analysis code for the pitch error has been also implemented according to the international standards (ISO). The PC based automatic compensation system for the pitch error is also implemented. A new algorithm for calculating optimum value for pitch error compensation is proposed, minimizing the deviation at each target points. The development system has been applied to a practical CNC maching center and the performance has been demonstrated.

  • PDF

The OMM System for Machined Form and Surface Roughness Measurement Concerned with Volumetric Error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.232-240
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF