• Title/Summary/Keyword: Laser absorption spectrometer

Search Result 16, Processing Time 0.02 seconds

Picosecond Absorption Kinetic Spectrometer with a Laser and a Streak Camera

  • Jang, Du-Jeon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.172-176
    • /
    • 1990
  • A high resolution picosecond absorption kinetic spectrometer utilizing dye emission and a streak camera is presented and compared with other methods of picosecond transient absorption measurements. Typical transient absorption and bleach recovery kinetics measured with this spectrometer are shown. Single wavelength transient absorption or ground state bleach recovery kinetics are determined on the basis of a single laser shot, so that the samples are relatively free frm decomposition by irradiation. Excellent kinetics may be obtained from the near UV to the near IR and are not subject to interference from luminescence of samples. The sensitivity of this spectrometer is very high and it is reasonably easy and convenient to set up and use.

  • PDF

펌프-촉침 방법을 이용한 피코초 순간 흡광 속도분광기 제작

  • 장두전
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.347-353
    • /
    • 1993
  • A picosecond transient absorption kinetic spectrometer using a pump-probe method is presented and compared with other methods of picosecond transient absorption measurements. This constructed kinetic spectrometer detects the transient transmittance of sample using a lock-in amplifier as a function of delay time between pump and probe pulses generated from a picosecond mode-locked cw dye laser. Typical transient absorption and ground state bleach recovery kinetic profiles measured with this spectrometer are shown. Excellent kinetic curves of transient absorption or ground state bleach recovery may be obtained at single wavelengths with this spectrometer.

  • PDF

Study on a cavity ring-down spectrometer with continuous wave laser sources (연속발진 레이저를 이용한 공동 광자감쇠 분광기 연구)

  • 유용심;한재원;김재완;이재용;이해웅
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.240-244
    • /
    • 1998
  • Cavity ring-down spectroscopy (CRDS) is a high-sensitive laser spectroscopic technique capable of measuring concentrations of trace gases. We have demonstrated a new design of the CRDS spectrometer with a continuous wave (CW) laser. The ring-dwon signal is produced through blocking the incident CW laser by scanning the cavity length fast toward off-resonance iwth PZT (piezoelectric transducer). We have also measured an absorption spectrum of acetylene overtone transitions near 570 nm at the pressure of 2700 Pa, and the minimum detectable absorption coefficient has been found to be about $3{\times}10^{-9}\cm^{-1}$.

  • PDF

Determination of Cholesterol by a Diode Laser/Fiber Optic Colorimetric Spectrometer

  • Kim, Seong Ho;Nam, Seong Man;Byeon, Sang Gil;Yun, Sin Yeong;Hong, Seong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.389-392
    • /
    • 2000
  • A simple and inexpensive colorimetric spectrometer for determining total cholesterol has been developed,comprising a diode laser as the light sourcoptical fibers for the light guide and a photodiode as the detector.The stabilty and performance of the new system was investigated by obtaining the calibration curve for stan-dard cholesterol solutions. The total cholesterol in humanserum was also measured by the analyzer and com-pared with the value obtained by a conventional spectrometer. The results showed that the developed spectrometer was useful for the determination of cholesterol levels. The visible diodelaser used in the study exhibited good spectroscopic and operational properties for colorimetric absorption spectrometry and could be a key component for the development of a simple and economical analyzer.

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm

  • Oh, Myoung-Kyu;Lee, Yong-Hoon;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 ${\mu}m$ using an external cavity diode laser. The absorption lines of methane between 6002.48 $cm^{-1}$ and 6003.37 $cm^{-1}$ and ethane between 5955.65 $cm^{-1}$ and 5956.4 $cm^{-1}$ have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5$\times10^{-20}cm^2$ and 7.4$\times10^{-21}cm^2$ for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8${\times}10^{-9}cm^{-1}$/$\sqrt{Hz}$, which corresponds to the detection limits of 3 ppb/$\sqrt{Hz}$ and 27 ppb/$\sqrt{Hz}$ for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.

Analysis of Continuum X-ray Specturum and Determination of Electron Temperature from Iodine Photodissociation Laser produced plasma (집속된 광분해 옥소레이저에 의한 플라즈마로부터 방출되는 연속 X-선 스펙트럼 분석과 전자온도 결정)

  • 김동환;김남성;이상수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.135-144
    • /
    • 1988
  • 1-GW Iodine photodissociation Laser (λ=1.315${\mu}{\textrm}{m}$)is focused to generate the continuum x-ray radiation at titanium(z=22)target. A piced of aluminum(360 )-mylar(8${\mu}{\textrm}{m}$) film is used to isolate the soft X-ray radiation emitted. Convex-xurved mica crystal spectrometer is used to obtain the soft x-ray spectra from the laser titanium target plasma and the slope of continum X-ray spectra are found to show two different different electron effective temperaturres, 0.11keV and 7.1KeV. We compare the two temperature result with the foil absorption method.

  • PDF

고온고압처리에 따른 천연갈색다이아몬드의 광학특성분석

  • Seo, Jin-Gyo;An, Yong-Gil;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.52-52
    • /
    • 2010
  • 본 연구에서 우리는 HPHT 처리 전 FT-IR spectrometer를 이용한 사전분석을 통해 type Ia brown 다이아몬드를 IaA, IaB, IaAB (A>B), IaAB (A=B), IaAB (A$1700-1800^{\circ}C$, 5 GPa에서 다이아몬드가 흑연화 되지 않는 범위 하에 HPHT처리를 시행하였다. 자외선-가시광선 분광분석기(UV-Vis Spectrometer, Shimadzu UV 3101PC)를 사용하여 350~800 nm에서의 가시광선 범위를 0.1nm의 분해능으로 투과(Transmittance) 모드로 측정하였고, 퓨리에 변환 적외선 분광분석기(FT-IR spectrometer, Jasco-4100)을 사용하여 $400{\sim}6000cm^{-1}$의 범위에서 $4cm^{-1}$ 의 분해능으로 흡수(Absorption) 모드로 측정한 후 HPHT 처리 전후를 비교 분석하였다. 또한 광루미네선스(Photoluminescence) 분석은 325 nm He-Cd laser를 광원으로 한(PL, Spectra-pro 2150i, Spectra-pro 2300i micro-spectrometer) 및 532 nm green laser를 광원으로 한(PL, SAS 2000)를 사용하여 각각 350~600 nm, 550~1100 nm의 범위에서 0.1nm step으로 측정하여 HPHT 처리전과 후를 비교 분석하였다. HPHT처리 후 모든 시료는 N3 center (415.4 nm), H4 center (496.4nm) 및 platelet와 연관된 ($1363\;cm^{-1}$)의 peak가 감소하였고, H3 center (503.2 nm)와 G-band가 증가하는 경향을 나타내었다. 또한 HPHT 처리 시 질소의 B집합보다 A집합이 더 감소하는 경향을 나타내었으며, A 또는 B집합의 파괴에서 발생된 질소 원자에 의해 질소의 interstitial center (594 nm)가 증가함을 알 수 있었다. HPHT 처리 후 모든 시료는 (N-V)- center가 생성됨을 확인 할 수 있었다. 결론적으로 본 연구를 통해 HPHT 처리를 통해 다이아몬드 내에 존재하는 질소결합관련 상태의 변화를 확인할 수 있었다.

  • PDF

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere (표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망)

  • PARK, MI-KYUNG;PARK, SUNYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.32-48
    • /
    • 2018
  • The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.

Production of Hyperpolarized 129Xe Using Spin Exchange Optical Pumping

  • Kavtanyuk, Vladimir Vladimirovich;Kim, Wooyoung;Ando, Yu;Chebotaryov, Sergey;Seon, Yonggeun;Tan, Joshua Artem
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1458-1465
    • /
    • 2018
  • We present a constructed setup for polarizing $^{129}Xe$ noble gas. Hyperpolarized $^{129}Xe$ has been obtained via spin exchange with an optically pumped rubidium vapor. Optical pumping is based on polarizing the valence electron of rubidium by the resonant absorption of a circularly polarized laser light. The magnetic field of 30 G was used for obtaining $^{129}Xe$ polarization. The apparatus for detecting polarization is a nuclear magnetic resonance spectrometer. The highest $^{129}Xe$ polarization of 54% has been obtained using 60 W circularly polarized laser light with wavelength of 794.7 nm. The measured longitudinal relaxation time of the hyperpolarized $^{129}Xe$ was 72.3 minutes.