• Title/Summary/Keyword: Laser Surface Treatment

Search Result 328, Processing Time 0.027 seconds

MC3T3-E1 osteoblast adhesion to laser induced hydroxyapatite coating on Ti alloy

  • Huang, Lu;Goddard, Samuel C.;Soundarapandian, Santhanakrishnan;Cao, Yu;Dahotre, Narendra B.;He, Wei
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.81-93
    • /
    • 2014
  • An in vitro cell study evaluating cell adhesion to hydroxyapatite (HA) coated prosthetic Ti-6Al-4V alloy via laser treatment is presented in comparison with uncoated alloy. Based on our previous in vitro biocompatibility study, which demonstrated higher cell attachment and proliferation with MC3T3-E1 preosteoblast cells, the present investigation aims to reveal the effect of laser coating Ti alloy with HA on the adhesion strength of bone-forming cells against centrifugal forces. Remaining cells on different substrates after centrifugation were visualized using fluorescent staining. Semi-quantifications on the numbers of cells were conducted based on fluorescent images, which demonstrated higher numbers of cells retained on HA laser treated substrates post centrifugation. The results indicate potential increase in the normalized maximum force required to displace cells from HA coated surfaces versus uncoated control surface. The possible mechanisms that govern the enhancing effect were discussed, including surface roughness, chemistry, wettability, and protein adsorption. The improvement in cell adhesion through laser treatment with a biomimetic coating could be useful in reducing tissue damage at the prosthetic to bone junction and minimizing the loosening of prosthetics over time.

Bond strength of resin cement to $CO_2$ and Er:YAG laser-treated zirconia ceramic

  • Kasraei, Shahin;Rezaei-Soufi, Loghman;Heidari, Bijan;Vafaee, Fariborz
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.296-302
    • /
    • 2014
  • Objectives: It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of $CO_2$ and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods: In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, $CO_2$ and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results: The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were $8.65{\pm}1.75$, $12.12{\pm}3.02$, and $5.97{\pm}1.14MPa$, respectively. Data showed that application of $CO_2$ and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions: Pretreatment of zirconia ceramic via $CO_2$ and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the $CO_2$ laser treated samples.

The effect of the surface activation treatment on the crystallization of amorphous silicon thin film (표면 활성화 처리가 비정질 규소 박막의 결정화에 미치는 영향)

  • 이의석;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.173-179
    • /
    • 1999
  • The effect of the surface activation treatment on the crystallization of the amorphous silicon film was investigated. The amorphous silicon film was deposited on the silica substrate with LPCVD technique. Wet blasting with silica slurry or exposure with Nd:YAG laser beam was applied on the amorphous silicon film before annealing for the crystallization. For the analysis of the crystallinity, XRD, Raman, and SEM were employed. In this investigation, the prior surface activation treatment like silica wet blasting or Nd:YAG laser beam exposure before annealing for the crystallization were found to be effective in the enhancement of the crystallization. It is believed that these treatment lower the activation energy required for the crystallization of the amorphous silicon film.

  • PDF

Characteristics of Surface Hardening of Nd:YAG Laser According to Temperature Changes of SM45C (SM45C강의 온도변화에 따른 Nd:YAG 레이저 표면경화 특성)

  • Lee, Ka-Ram;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.988-997
    • /
    • 2012
  • Laser surface hardening is one of core technologies to enhance various characteristics such as the strength, hardness, toughness, abrasion resistance, and fatigue resistance for the mold material. This paper focuses on testing characteristics of the laser heat treatment according to the preheating parameters in case of the SM45C medium carbon steel. In this paper, we assume that the power and travel speed of the laser are 1,800W and 0.5m/min, respectively, and the range of the preheating temperature is $50^{\circ}C{\sim}300^{\circ}C$. From the result of the test, we observed that the hardness width and depth are enhanced as the temperature is increased. Also, the best average hardness was 751.7Hv for the temperature of $100^{\circ}C$.

Hard, Wear Resistant Metal Surfaces for Industrial Applications through Laser Powder Deposition

  • Sears, James;Costello, Aaron
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.293-294
    • /
    • 2006
  • Laser Powder Deposition (LPD) is a technology capable of modifying a metallic structure by adding the appropriate material to perform a desired function. LPD offers a unique fabrication technique that allows the use of soft (tough) materials as base structures. Through LPD a hard material can be applied to the base material with little thermal input (minimal dilution and heat-affected-zone {HAZ}), thus providing the function of a heat treatment or other surface modifications. These surface modifications have been evaluated through standard wear testing (ASTM G-65), surface hardness (Rc), micro-hardness (vickers), and optical microscopy.

  • PDF

THE EFFECT OF ND : YAG LASER ON DENTINAL TUBULE SEAL AFTER ROOT END RESECTION (치근단절제시 노출된 상아세관의 밀폐효과에 대한 Nd : YAG 레이저의 효과)

  • Shin, Kwang-Chul;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.311-320
    • /
    • 1996
  • If root and resection is done during surgical endodontic treatment, newly exposed dentinal tubules form pathways between the canal and the peripheral tissue. Nd : YAG laser was used to block this phenomenon, and its effect was studied with dye penetration and SEM techniques. 40 intact single rooted teeth were divided into 4 groups(10 each) : control group and test groups, in which retrograde cavity surface, cutting surface, retrograde cavity surface & cutting surface were treated with laser(1 watt 15pps) and finally retrograde filling with IRM was conducted. After that, they were stained with 2 % methylene blue, sectioned and evaluated by the maximum infiltration depth. And to observe surface change, they were prepared for SEM. The results were as follows ; 1. All experimental groups showed microleakage with variation in amount. 2. The 2nd group which treated both the retrograde cavity and cutting surface showed significantly less microleakage than the other groups(p<0.05). There was no significant difference between groups treated on one side only. 3. As a result of SEM observation of dentin surface, obstruction of dentinal tubules with marble shaped granules, which were different from normal dentin could be seen. Cracks could be seen also. 4. In summary of this experiment, it is thought that effort to obstruct the exposed dentinal tubules as well as retrograde cavity after root end resection is needed.

  • PDF

Material Processing by Laser (레이저를 이용한 재료가공)

  • 황경현;이성국
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.98-106
    • /
    • 1990
  • Lasers are used increasingly for specialized engineering applications such as drilling, profile cutting, welding and surface heat-treatment(hardening, alloying, annealing0 of metals and non-metals. The most important characteristics of lasers used for these materials-processing applications are reviewed, with special emphasis on the importance of the controlled heating process. In addition to these processes, some optical devices and supplementary equipment used in laser processing are introduced. Finally, some examples shows the wide variety of laser capability for substitution of traditional materials processing.

  • PDF

ER: YAG LASER IRRADIATED IMPLANT SURFACE OBSERVATION WITH SCANNING ELECTRON MICROSCOPY (Er: YAG 레이저 조사 임프란트 표면에 대한 전자주사현미경관찰)

  • Choi, Jung-Goo;Choi, Su-Jin;Min, Seung-Ki;Oh, Seung-Hwan;Kwon, Kyung-Hwan;Choi, Moon-Ki;Lee, June;Oh, Se-Ri
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.540-545
    • /
    • 2008
  • Since mid 20th century, dental treatments with laser have been introduced and improved a lot. Because early $CO_2$, Nd:YAG, diode, argon, and holmium lasers are used for dealing soft tissue, so it applied just limited field. But, in 1997 the lasers of erbium family that able to dealing soft and hard tissue also were introduced, laser application fields are enlarged. In today, the application fields reach on implantation treatment, so clinicians can use the laser to make holes for implantation, and flap elevation, even though treating peri-implantitis. So our class want to discover the optimal setting of Er:YAG laser when treating peri-implantitis. We observed the surface that initially treated by RBM and TPS passion and laser with varied options of exposure time and power with SEM image. For this we conclude the optimal setting range that does not alter the implant surface structure and report it.

Surface Hardness as a Function of Laser Metal Deposition Parameters (레이저 메탈 디포지션 변수에 의한 표면경도 특성 분석)

  • Kim, WH;Jung, BH;Park, ID;Oh, MH;Choi, SW;Kang, DM
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The characteristics of the laser metal deposition parameters were studied to enhance the deposition efficiency using a diode pumped disk laser. STD61 hot tool steel plate and Fe based AISI M2 alloy were used as a substrate and powder for the laser metal deposition, respectively. Among the laser metal deposition parameters the laser power, track pitch and powder feed rate were used to estimate the deposition efficiency. From the experimental results, the deposition efficiency was shown to be excellent when 1.8kW laser power 500um track pitch and 10g/min of the powder feed rate were used. For this optimal condition the average hardness of the deposition track was approximately 830HV, and this value is 30~50% better than the hardness of the commercially produced tool steel after heat treatment.

EFFECT OF ND : YAG LASING ON TEMPERATURE RISING AND PROPERTIES OF MATTER OF DENTAL IMPLANTS (Nd : YAG LASER 조사가 치과 임플란트의 물성과 온도 상승에 미치는 영향)

  • Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.489-500
    • /
    • 1996
  • Pulsed Nd : YAG LASER has been applied to various fields in clinical dentistry including the treatment of peri-implantitis. However, LASER can affect properties of matter of dental implants which are important to maintaining the health of peri-implant tissue and can raise its temperature during lasing. So there have been warings of using LASER to treat peri-implantitis. But, the effects of laser on dental implants itself are not certain yet. So we measured the temperature rising, examined matter of properties by SEM and EDX before and after pulsed Nd : YAG lasing various intensity. 7 TPS implants and 7 HPS implants were used and pulsed Nd : YAG LASER was used in 0.3W, 1.0W, and 2.0W. 1. 2.0W LASER made polished neck portion of HPS implants reach $39.2^{\circ}C$ after 5 seconds lasing. 2. LASER made crater-like defects on plasma sprayed surface and surfaces were melted and divided by fragments after lasing. 3. There was no specific evidence of element change after lasing.

  • PDF