• Title/Summary/Keyword: Laser Scanning Microscope

Search Result 323, Processing Time 0.026 seconds

Scanning confocal microscope using a quad-detector (4분할 photodiode를 이용한 scanning confocal microscope)

  • 유석진;김수철;이진서;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.165-168
    • /
    • 1997
  • We have constructed a scanning confocal microscope using a 780 nm semiconductor laser, an actuator of a compact disk player and a quad-detector. This device detects heights and characteristics of a surface. The laser focus was located at the surface of a sample by using the error signal obtained by a quad-dector, and the current supplied to the actuator for lens was displayed as a height. The materials of a surface were classified according to reflected total intensities and was displayed by different color in a monitor. The device has very samll dimensions of 30 mm$\times$20 mm$\times$20 mm and scan field is 1.6 mm$\times$1.6mm. We obtained two images, one using only reflected light and the other using an error signal from a quad-detector and compared these two images.

  • PDF

Quantification of Melanin Density at Epidermal Basal Layer by Using Confocal Scanning Laser Microscope (CSLM) (Confocal Scanning Laser Microscope (CSLM)을 이용한 피부 기저층 멜라닌 밀도의 정량화)

  • Kim, Dong Hyun;Lee, Sung Ho;Oh, Myoung Jin;Choi, Go Woon;Yang, Woo Chul;Park, Chang Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • Non-invasive technologies in skin research have enabled to use a live image of living skin without a biopsy or histologic processing of tissue. Confocal scanning laser microscope (CSLM) operated at a near-infrared wavelength of 830 nm allows visualization of inner structure of skin as a non-invasive manner. According to previous researches using CSLM, melanin cap and papillary ring were clearly observed in pigmented areas between stratum basale and papillary dermis. In this study, conversional analysis of CSLM digital images into numerical estimation using scanning probe image processor (SPIP) software was attempted for the first time. It is concluded that a quantification of CSLM images can pave way to expand the field of applications of CSLM.

Surface measurement using Confocal principle (공초점 원리를 이용한 표면 현상 측정)

  • 송대호;유원제;강영준;김경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.51-54
    • /
    • 2000
  • The traditional surface measuring method using confocal principle requires much time to measure an object surface since it is a scanning tool. In this paper, the upgraded confocal microscope is introduced. It is also a scanning tool but it requires 2D-scanning while the traditional one requires 3D-scanning. It means the time for measuring is considerably reduced. In addition, the measuring system is configured to increase the efficiency of beam. He-Ne laser whose frequency is 632.8nm is used for the laser source. An example of measuring result through the upgraded confocal microscope is showed.

  • PDF

Two Dimensional Atomic Force Microscope (서브나노급 정밀도의 2 차원 원자현미경 개발)

  • Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1778-1783
    • /
    • 2008
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nanometrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

  • PDF

An Experimental Study on the Effect of Laser to Bond Strength between Composite Resin and Bovine Teeth (우치치질에 레이저조사시 레진과의 결합강도에 관한 연구)

  • Cho, Ju-On;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.155-172
    • /
    • 1989
  • The purpose of this study is to measure the bonding strength at the enamel and dentin of extracted bovine incisors when they are irradiated by W Nd: YAG, EoQ Nd: YAG, and CW $CO_2$ laser, etched and then attached by composite resin. The laser-irradiated surface, the etched surface after the laser-irradiation and the interface of the treated surface and resin are observed by using scanning electron microscope. The NP Nd:YAG laser is used at the peam power of 207 KW. The EOQ Nd: YAG laser is used at the peak power of 1.15Mk. The CW $CO_2$ laser is used at the energy output of 5W and 10W in enamel; in dentin, at the energy output of 2W. The obtained results were as follows: 1. The shear bond strength of enamel decreased in the following order: EOQ Nd:YAG laser group, NP Nd:YAG laser group, CW $CO_2$ laser groups, unlased group. The unlased group showed a significant difference from EOQ Nd:YAG laser group (P<0.01), NP Nd:YAG laser group (P<0.05), but no significant difference from CW $CO_2$ laser group (P>0.05). 2. The shear bond strength of dentin decreased in the following order: CW $CO_2$ laser group, NP Nd:YAG laser group, unlased group, EOQ Nd:YAG laser group. The unlased group showed a significant difference from CW $CO_2$ laser group (P<0.01), but no significant difference from Nd:YAG laser groups (P>0.05). 3. The scanning electron microscope of enamel revealed irregular microcrack and pore at the surface in the NP Nd:YAG laser group and CW $CO_2$ laser group, but the crackless flat surface in the EOQ Nd:YAG laser group. 4. The scanning electron microscope of dentin revealed obstruction of in most of dentinal tubule and decrease of diameter. 5. The scanning electron microscope of the interface of resin and enamel revealed prominent penetration of resin tag in the EOQ Nd:YAG laser group.

  • PDF

Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM (하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정)

  • Kim, Jong-Bae;Kim, Kyeong-Ho;Bae, Han-Sung;Nam, Gi-Jung;Lee, Dae-Chul;Seo, Woon-Hak
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

Fiber Orientation in Injection-Molded Short Fiber Composites with a Confocal Laser Scanning Microscope and Numerical Simulation (공초점 레이저 주사 현미경을 이용한 단섬유 복합재료 사출 성형물 내의 섬유 배열 측정 및 수치모사)

  • Lee, Kwang-Seok;Le, Seok-Won;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.201-204
    • /
    • 2001
  • A Confocal Laser Scanning Microscope (CLSM) is applied to determine three-dimensional fiber orientation states in injection-molded short fiber composites. Since the CLSM optically sections the composites, more than two planes either on or below the surface of composites can be obtained. Therefore, three dimensional fiber orientation states are determined without destruction. To predict the orientation states, velocity and temperature fields are calculated by using a hybrid FEM/FDM method. The change of orientation state during packing stage is also considered by employing a compressible Hele-Shaw model. The predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from other effects, which are not considered in the numerical analysis.

  • PDF