• Title/Summary/Keyword: Laser Scanning Micrometer

Search Result 11, Processing Time 0.018 seconds

Monitoring of Grinding Wheel Wear Using Laser Scanning Micrometer (LSM을 이용한 연삭 숫돌 마모 모니터링)

  • Ju, Gwang-Hun;Kim, Hyeon-Su;Hong, Seong-Uk;Park, Cheon-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.82-87
    • /
    • 2000
  • This paper deals with monitoring of grinding wheel wear in grinding process. A monitoring system is developed in which a laser scanning micrometer is used to measure the circumferential shape as well as the axial shape of grinding wheel. The monitoring system is applied to grinding machines. The experiment results show that the monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for measuring the apparent diameter of the grinding wheel.

  • PDF

Monitoring of Grinding Wheel Wear in Surface Grinding Process by Using Laser Scanning Micrometer

  • Ju, Kwang-Hun;Kim, Hyun-Soo;Hong, Seong-Wook;Park, Chun-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This paper deals with the monitoring of grinding wheel wear in surface grinding process. A monitoring system, which makes use of a laser scanning micrometer, is developed to measure the circumferential shape as well as the axial profile of grinding wheel. The monitoring system is applied to surface grinding processes. The experimental results show that the developed monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for evaluation the quality of ground surface and determining proper derssing time for the grinding wheel.

  • PDF

Optimization of Laser Lithography Micropatterning Technique based on Taguchi Method (다구찌 방법을 이용한 레이저 리소그라피 미세패턴 가공조건의 최적화)

  • Baek, Nam-Guk;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.59-64
    • /
    • 2002
  • Laser lithography technique is useful for fabricating micro-patterns of silicon wafers. In this work, the laser lithography micromachining technique is optimized based on Taguchi method. Sensitivity analysis was performed using laser scanning speed, laser power level, developing time and mixture ratio between developer and Di-water as the parameters. The results show that for the photoresist used in this work, 70${\mu}m$/s scan speed, 50㎽ laser power, 60sec. developing time and 6: 1 mixture ratio gives the best result. This work shows the effectiveness of laser lithography technique in fabricating patterns with a flew micrometer in width.

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Estimation and Experimental Verification of Grinding Wheel Wear in Surface Grinding Process (평면 연삭에서의 연삭 숫돌 마모 추정 및 실험적 검증)

  • Ju, Gwang-Hun;Lee, Eung-Suk;Kim, Hyeon-Su;Hong, Seong-Uk;Park, Cheon-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.150-156
    • /
    • 2001
  • This paper deals with the theoretical estimation and its experimental verification of grinding wheel wear in surface grinding process. A theoretical formulation is provided to predict the grinding wheel wear in surface grinding. To validate the theoretical prediction, the grinding wheel wear is measured by using a laser scanning micrometer. The associated surface roughness and grinding farce are also investigated both theoretically and experimentally. Through a series of simulations and experiments, it is shown that the predictions are in good agreement with the experimental results.

  • PDF

Simulation and Improvement of Grinding Processes for Linear Motion Guide Blocks (선형가이드용 블록 연삭 공정 시뮬레이션 및 개선에 대한 연구)

  • 조명동;김현수;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1018-1021
    • /
    • 1997
  • This paper presents a result of simulation and improvement of grinding process for linear motion guide blocks. A simulation software, which is based on cylindrical grinding process. is used to predict the grinding wheel wear during the grinding process. To validate the simulation, the simulation result is compared with the experimental one. Simulation study is extended to obtain an optimal grinding condition for minimizing the grinding wheel wear. The optimal condition is validated through an experiment.

  • PDF

Monitoring of Grinding Wheel Wear in Surface Grinding (평면 연삭에서의 연삭 숫돌 마모 모니터링)

  • 주광훈;김현수;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.613-616
    • /
    • 2000
  • This paper deals with monitoring of grinding wheel wear in surface grinding process. A laser scanning micrometer is used to measure the circumferential shape as well as the axial shape of grinding wheel. The monitoring system is applied to two kinds of grinding methods: plunge and traverse grinding. Through experiments, it is found that measurement of grinding wheel wear reveals information of roughness of ground surface and the adequate dressing time. In addition, monitoring of grinding wheel wear makes it possible to identify abnormal grinding conditions.

  • PDF

The Study on Chip Surface Treatment for Embedded PCB (칩내장형 PCB 공정을 위한 칩 표면처리 공정에 관한 연구)

  • Jeon, Byung-Sub;Park, Se-Hoon;Kim, Young-Ho;Kim, Jun-Cheol;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.77-82
    • /
    • 2012
  • In this paper, the research of IC embedded PCB process is carried out. For embedding chips into PCB, solder-balls on chips were etched out and ABF(Ajinomoto Build-ip Film), prepreg and Cu foil was laminated on that to fabricate 6 layer build-up board. The chip of which solder ball was removed was successfully interconnected with PCB by laser drilling and Cu plating. However, de-lamination phenomenon occurred between chip surface and ABF during reflow and thermal shock. To solve this problem, de-smear and plasma treatment was applied to PI(polyimide) passivation layer on chip surface to improve the surface roughness. The properties of chip surface(PI) was investigated in terms of AFM(Atomic Force Micrometer), SEM and XPS (X-ray Photoelectron Spectroscopy). As results, nano-size anchor was evenly formed on PI surface when plasma treatment was combined with de-smear(NaOH+KMnO4) process and it improved thermal shock reliability ($260^{\circ}C$-10sec solder floating).

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.