• 제목/요약/키워드: Laser Induced Scattering

검색결과 71건 처리시간 0.02초

레이저 진단기법을 이용한 연소 가시화 기술 (Visualization of Combustion by Using Laser Diagnostic Techniques)

  • 정석호;원상희
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.52-56
    • /
    • 2004
  • Several visualization techniques of laser diagnostics are presented for combustion phenomena, including Mie scattering for flow, Rayleigh and Raman scattering spectroscopy for major species, laser-induced fluorescence for minor species, and laser-induced incandescence for soot. These techniques have been applied to understand the various combustion phenomena more clearly, including buoyancy-dominant flow system, diffusion flam oscillation, laminar and turbulent lifted flames, flame propagation along a vortex ring, and soot zone characteristics. The usefulness of laser diagnostics on a better understanding of physical mechanism is demonstrated.

  • PDF

입자 이동 방식에서 Laser Induced Fluorescence와 뭉침에 관한 연구 (A Study on Laser Induced Fluorescence and Coagulation in Particle Transport Mode)

  • 김기준
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.340-346
    • /
    • 2006
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF). The effects of optical properties in scattering media have been found by the optical $parameters({\mu}_s,\;{\mu}_a,\;{\mu}_t)$. Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process, The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer it has been found that the slope decays exponentially as a function of distance from laser source to detector. It may also aid in designing the best model for oil chemistry, biopharmaceutical products, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

무질서한 매질에서 침투깊이와 파동 전파 (Penetration depth and Wave Propagation in Random Media)

  • 김기준;성기천
    • 한국응용과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.70-76
    • /
    • 2006
  • The influence of fluorophor, scatterer, absorber in turbid materials by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it is studied the molecular property by laser induced fluorescence spectroscopy. It can be found that the effects of optical property are penentrated in scattering media by the optical $parameters({\mu}s$, ${\mu}a$, ${\mu}t$, ${\gamma}$, ${\rho})$. The value of scattering coefficient ${\mu}s$ is large appeared by means of the increasing particles of scattering, it can be found that the slope appears exponentially as a function of distance from laser source to detector. It may also utilize in designing the best model for oil chemistry, laser medicine and application of medical engineering.

레이저 탄성산란법, 여기적열법, 자발광을 이용한 가시화 디젤엔진의 후기연소의 2차원 soot 분포 측정 (Measurments of 2-D Image Soot Distribution in Late Combustion Stage Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity)

  • 노승민;원영호;박정규;최인용;전광민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.162-167
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D imaging soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage.

  • PDF

평면 선해리 레이저유도 형광법과 레이래이 분산법을 이용한 연소실내의 OH 및 $O_2$의 2차원적 농도측정 (Two-dimensional $O_2$ and OH Density Measurement Using Tunable KrF Excimer Laser Light a Combustion Bomb via Planar Laser Induced Predissociative Fluorescence and Laser Rayleigh Scattering)

  • 김경수
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.91-99
    • /
    • 1994
  • Tunable KrF Excimer Laser is used here for measuring OH and $O_2$ density distribustion in an open $H_2$/air premixed flame and in a combustion bomb. Laser Rayleigh Scattering(LRS) and Planar Laser Induced Predissociative Fluorescence(PLIPF) methods are used to obtain two-dimensional images of total and specific densities. Laser Excitation wavelengths are calibrated via flame images and combustion bomb images show good qualitative a greement with theoretical calculation. Furthermore images in a combustion bomb can be developed to study real Spark-Ignition engine combustions. Our experimental images show that there are no more collisional quenching problem at high pressure environment(including atmospheric pressure) using predissociative fluorescence technique. Further development to obtain two-dimensional temperature dustribution is ready to use eventhough it is not reported in this paper.

  • PDF

아세톤 형광을 이용한 공연비 측정 기법 연구 (An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence)

  • 박승재;허환일;오승묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

형광, 산란광 동시 촬열법을 이용한 가솔린 분무의 거동에 관한 연구 (Visualization of Gasoline Sprays Via a Simultaneous Inaging of Fluorescence and Scattering Lights)

  • 원영호
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.167-174
    • /
    • 1997
  • The penetration depth and the size distribution of the droplets of fuel sprays are important in the operation of spark-ignition MPI engines. A fluorescence/scattering image technique for droplet sizing was applied to measure th edroplet size distribution in non-evaporating gasoline sprays. The fluorescence and scattering lights were imaged simultaneously by the two-dimensional visualization system composed of a laser sheet, a doubling prism, optical filters, and a CCD camera. Quantitative droplet size distributions were extracted from evaluating the ratio of the two light densities. The mean droplet size measured by the fluorescence/scattering technique was compared with the result obtained by the enlarged photographs of droplets. The fluorescence/scattering image technique also gives the useful information of the characteristics of droplet impingement in a inclined wall.

  • PDF

L-Aspartic Acid의 무질서하게 분포된 매질에서 파동전개와 변동에 관한 연구 (Studies on the Wave Propagation and Fluctuation in Randomly Ditribution Media of L-Aspartic Acid)

  • 김기준;이주엽
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.122-128
    • /
    • 2012
  • L-arpartic acid의 산란혼탁매질에서 형광, 산란과 응집의 영향은 파장과 산란된 형광세기로 나타내는데, laser induced fluorescence(LIF) 분광학에 의한 분자특성으로 나타난다. 산란매질에서 광학적 효과는 광학적 파라미터들(${\mu}_s$, ${\mu}_a$, ${\mu}_t$)에 의해 표현되고 응집은 고-액상 분리공정에서 중요하게 활용되고 있다. 따라서 입자가 서로 접근될 때 콜로이드 입자들의 상호작용을 LIF와 응집효과로 분석하였다. 레이저 광원에서 검출기까지 농도의 함수에 의해 농도가 묽어짐에 따라 산란세기가 기하급수적으로 감소함을 알 수 있다. 이는 유지화학, 생의학 생성물, 레이저 의학, 의공학 분야적용에 LIF와 입자이동 현상은 아주 적합한 모델 연구에 큰 도움이 될 것이다.

레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정 (Measurements of Soot Volume Fraction Using Laser Induced Incandescence)

  • 이승;이상협;이병준;한재원
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.