• Title/Summary/Keyword: Laser Energy

Search Result 1,581, Processing Time 0.03 seconds

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Mechanical Properties of Silicon Nitride Laser-Assisted Machined by Laser Power (레이저 출력에 따른 레이저예열선삭된 질화규소의 기계적 특성)

  • Kim, Jong-Do;Lee, Su-Jin;Shin, Ding-Sig;Suh, Jeong;Lee, Jae-Hoon
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.12-16
    • /
    • 2009
  • The engineering ceramic is one of the materials advantageous in various conditions with high strength, endurance at high temperature, abrasion resistance and corrosion resistance, etc. However, due to high strength and high brittleness, ceramic incurs high costs and long time on finishing process required after sintering. So a process for obtaining wanted measurements of them has been studied using the high temperature which makes ceramics softened and heat affected recently. This study makes an estimate of laser-assisted machining (LAM) if an economically practical process for manufacturing precision silicon nitride ceramic parts using laser beam. In this study, mechanical properties of silicon nitride at high temperature were observed. And during the LAM, it was observed that cutting force and tool wear were reduced and oxidation of machined surface was increased according to a increase of laser power.

  • PDF

Investigation on Nd:YAG Laser Weldability of Zircaloy-4 End Cap Closure for Nuclear Fuel Elements

  • Kim, Soo-Sung;Lee, Chul-Yung;Yang, Myung-Seung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Various welding processes are now available for end cap closure of nuclear fuel element such as TG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulity in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed The effects of irradiation on the properties of the laser apparatus were also being studied.

  • PDF

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Transient and synchronization behaviors of a standing-wave TA (Thermoacoustic) laser pair

  • Hyun, Jun Ho;Oh, Seung Jin;Shin, Sang Woong;Chen, Kuan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.48-57
    • /
    • 2014
  • The transient and synchronization behaviors of a TA (thermo acoustic) laser pair were investigated experimentally for various crossing angles and different separation distances between the laser openings. Sound waves generated by the lasers were measured and analyzed at or near the focusing point by means of microphones, SPL meters, and a commercial software called Signal-Express. The two TA lasers were acoustically coupled through the air mass between their openings, and the only mode-locking operation that could be achieved was the one that was nearly $180^{\circ}C$ out of phase. The time to achieve synchronization was found to be dependent upon the initial mistuning of the frequencies and the crossing angle between the laser axes. The synchronization process could also be accelerated by turning on the laser with the lower power input first.

Optical Parametric Chirped-pulse Amplification of Femtosecond Ti:sapphire Laser Pulses by Using a BBO Crystal

  • Cha, Yong-Ho;Lee, Ki-Tae;Nam, Seong-Mo;Yoo, Byoung-Duk;Rhee, Yong-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • We have characterized the optical parametric chirped-pulse amplification of femtosecond Ti:sapphire laser pulses by using a BBO crystal. It is numerically verified that a high gain and a broad gain bandwidth can be obtained with a 532-nm pump laser. The dependence of the gain profile of OPA on phase matching angles, pump intensity, and crystal length is numerically investigated. Experimental results shows that the temporal fluctuation of a pump laser causes the modulation of an amplified spectrum in OPCPA.

Analysis of the Square Beam Energy Efficiency of a Homogenizer Near the Target for Laser Shock Peening

  • Kim, Taeshin;Hwang, Seungjin;Hong, Kyung Hee;Yu, Tae Jun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.407-412
    • /
    • 2016
  • We analyzed through numerical simulations the properties of a square beam homogenizer near the target for laser shock peening. The efficiency was calculated near the target by considering the plasma threshold of the metals. We defined the depth of focus of the square beam homogenizer with a given efficiency near the target. Then, we found the relationship between the depth of focus for the laser shock peening and four main parameters of the square beam homogenizer: the plasma threshold of the metal, the number of lenslets in the array-lens, the focal length of the condenser lens and the input beam size.

A Study on the Linetic Energy of the Laser-Ablated Cation Using Time-of-Flight Mass Spectrometry

  • 신동남;임훙선;정경훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.171-174
    • /
    • 1997
  • The initial kinetic energy of laser-ablated Zn cation has been investigated via time-of-flight mass spectrometry. The flight times of the ions have been measured with a high voltage pulse on the extract electrode in the mass spectrometer, which has been delayed from the laser pulse. The time-of-flight equation including the initial kinetic energy term of the ion has been derived for the mass spectrometer. The optimum value of the initial kinetic energy has been extracted by fitting the measured flight times into the time-of-flight equation. The initial kinetic energy of the ions generated by Nd:YAG laser (532 nm) at the power density of 5 × 107 W/cm2 has been determined to be 22-44 kJ/mol.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.