• Title/Summary/Keyword: Laser Energy

Search Result 1,581, Processing Time 0.033 seconds

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.107-114
    • /
    • 2018
  • In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

Residual Stress Analysis of New Rails Using Contour Method (굴곡측정법을 이용한 신 레일의 잔류응력 분석)

  • Song, Min Ji;Choi, Wookjin;Lim, Nam-Hyoung;Kim, Dongkyu;Woo, Wanchuck;Lee, Soo Yeol
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.393-399
    • /
    • 2018
  • It is well recognized that residual stresses of the rails, generated from the manufacturing process including roller straightening and heat treatment, play an important role in determining fatigue and fracture properties of the rails. Thus, it has been a challenge to measure the residual stresses accurately. In this work, contour method was employed to evaluate the residual stresses existing in interior of the rails. The cross section perpendicular to the longitudinal direction of the rail was cut at a very slow rate using electric discharge machining (EDM), after which a laser-based flexural measuring instrument enabled us to precisely measure the flection of the cross section. The measured data were converted into the residual stresses using the commercial finite element package, ABAQUS, through a user-defined element (UEL) subroutine, and the residual stresses of the new rails (50N, KR60, UIC60) with three different specifications were compared.

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo;Doo-Ho Choi;Muhammed Taofiq Hamza;Kyung-Oh Doh;Chang-Yoon Lee;Yeon-Sik Choo;Sangman Lee;Jong-Guk Kim;Heeyoun Bunch;Young-Bae Seu
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.366-373
    • /
    • 2022
  • Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

Dependence of Electrical and Optical Properties on Substrate Temperatures of AZO Thin Films (기판온도에 의한 AZO 박막의 전기적 및 광학적 특성 변화)

  • Seong-Jun Kang;Yang-Hee Joung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1067-1072
    • /
    • 2023
  • We prepared AZO (Al2O3 : 3 wt %) thin films according to the substrate temperature using the pulsed laser deposition method and the structural, electrical, and optical properties of the thin films were investigated. The AZO thin film deposited at 400℃ showed the best (002) orientation and the FWHM was 0.38°. As a result of the investigation of electrical properties, it was confirmed that the carrier concentration and mobility increased and the resistivity decreased as the substrate temperature increased. The average transmittance in the visible light region showed a high value of 85% or more regardless of the substrate temperature. The Burstein-Moss effect, in which the carrier concentration would increase with increasing substrate temperature thereby widening the energy band gap, was also observed. The resistivity and the figure of merit of the AZO thin film deposited at a substrate temperature of 400℃ were 6.77 × 10-4 Ω·cm and 1.02 × 104-1·cm-1 respectively, showing the best value.

Design of Polymer Composites for Effective Shockwave Attenuation (충격파 완화 복합재의 설계)

  • Gyeongmin Park;Seungrae Cho;Hyejin Kim;Jaejun Lee
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • This review paper investigates the use of shockwave attenuating materials within composite structures to enhance personnel protection against blast-induced traumatic brain injury (bTBI). This paper also introduces experimental methodologies exploited in the generation and measurement of shockwaves to evaluate the performance of the shock dissipating composites. The generation of shockwaves is elucidated through diverse approaches such as high-energy explosives, shock tubes, lasers, and laser-flyer techniques. Evaluation of shockwave propagation and attenuation involves the utilization of cutting-edge techniques, including piezoelectric, interferometer, electromagnetic induction, and streak camera methods. This paper investigates phase-separated materials, including polyurea and ionic liquids, and provides insight into composite structures in the quest for shockwave pressure attenuation. By synthesizing and analyzing the findings from these experimental approaches, this review aims to contribute valuable insights to the advancement of protective measures against blast-induced traumatic brain injuries.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Optical spectroscopy of Tb3+ ions doped NaCa(PO3)3 phosphors (Tb3+ 이온이 첨가된 NaCa(PO3)3 형광체의 형광특성)

  • Yoon, Changyong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.451-457
    • /
    • 2018
  • Luminescence properties of $NaCa(PO_3)_3$ doped with $Tb^{3+}$ ions are investigated by optical and laser excitation spectroscopy. The phosphors were prepared by solidstate reaction method The X-ray diffraction(XRD) was used to analyze the crystal structure and the crystallinity of the samples. The excitation and emission spectra and decay curve of $NaCa(PO_3)_3:Tb^{3+}$(0.01 ~ 30mol%) were measured at room temperature. The f - d band of $Tb^{3+}$ is observed in the excitation spectra of $NaCa(PO_3)_3:Tb^{3+}$ in the wave length region 205 ~ 245 nm. Strong emission lines due to the $^5D_4{\rightarrow}^7F_J$ transition and weak emission lines due to the $^5D_4{\rightarrow}^7F_J$ transition are observed in the emission spectra of $NaCa(PO_3)_3:Tb^{3+}$. The energy transfer and cross relaxation between $Tb^{3+}$ ions are discussed in $NaCa(PO_3)_3:Tb^{3+}$ in the emission spectra and life time.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.