• Title/Summary/Keyword: Laser Altimeter

Search Result 11, Processing Time 0.023 seconds

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

Ground Altitude Measurement Algorithm using Laser Altimeter and Ultrasonic Rangefinder for UAV (레이저 고도계와 초음파 거리계를 이용한 무인항공기 지면고도측정 알고리즘 설계)

  • Choi, Kyeung-Sik;Hyun, Jung-Wook;Jang, Jae-Won;Ahn, Dong-Man;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.749-756
    • /
    • 2013
  • This paper presents an algorithm concerning the ground altitude measurement using a laser altimeter and an ultrasonic rangefinder for UAV(Unmanned Aerial Vehicle). A simple ground test conducted using the laser altimeter and ultrasonic rangefinder that are used for conducting the low altitude measurement of UAV and identify the characteristics of each sensor. Especially, the disadvantages of the laser altimeter were checked through the ground test. After that who those are participated in this paper planned the algorithm which is complemented by the ultrasonic rangefinder and the experiment was conducted. The laser altimeter and the ultrasonic rangefinder were fused by a loosely coupled method by Kalman filter. The paper shows that stable value of altitude complemented by the ultrasonic rangefinder that covers the laser altimeter's drawbacks can be measured through the ground test.

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

  • Park, Tae-Jin;Lee, Woo-Kyun;Lee, Jong-Yeol;Hayashi, Masato;Tang, Yanhong;Kwak, Doo-Ahn;Kwak, Han-Bin;Kim, Moon-Il;Cui, Guishan;Nam, Ki-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.307-318
    • /
    • 2012
  • To understand forest structures, the Geoscience Laser Altimeter System (GLAS) instrument have been employed to measure and monitor forest canopy with feasibility of acquiring three dimensional canopy structure information. This study tried to examine the potential of GLAS dataset in measuring forest canopy structures, particularly maximum canopy height estimation. To estimate maximum canopy height using feasible GLAS dataset, we simply used difference between signal start and ground peak derived from Gaussian decomposition method. After estimation procedure, maximum canopy height was derived from airborne Light Detection and Ranging (LiDAR) data and it was applied to evaluate the accuracy of that of GLAS estimation. In addition, several influences, such as topographical and biophysical factors, were analyzed and discussed to explain error sources of direct maximum canopy height estimation using GLAS data. In the result of estimation using direct method, a root mean square error (RMSE) was estimated at 8.15 m. The estimation tended to be overestimated when comparing to derivations of airborne LiDAR. According to the result of error occurrences analysis, we need to consider these error sources, particularly terrain slope within GLAS footprint, and to apply statistical regression approach based on various parameters from a Gaussian decomposition for accurate and reliable maximum canopy height estimation.

GENERATION OF TOPOGRAPHIC PRODUCTS ON MARS

  • Yoon Jong-suk;Shan Jie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.683-686
    • /
    • 2005
  • This study addresses a photogrammetric approach to generate Mars topographic products from mapping data of Mars Global Surveyor (MGS). High-resolution stereo images and laser altimetry data collected from the MGS mission are combined and processed to produce Digital Elevation Models (DEM) and orthoimages. First, altimeter data is registered to high resolution images and considerable registration offset (around 325 m) is discovered on high resolution stereo images. Altimetry data, exterior orientation elements of the camera and conjugate points are used for bundle adjustment to solve this mis-registration and detennine the ground coordinates. The mis-registration of altimetry data are effectively eliminated after the bundle adjustment. Using the adjusted exterior orientation the ground coordinates of conjugate points are detennined. A sufficient number of corresponding points collected through image matching and their precise 3-D ground coordinates are used to generate DEM and orthoimages. A posteriori standard deviations of ground points after bundle adjustment indicate the accuracy of OEM generated in this study. This paper addresses the photogrammetric procedure: the registration of altimetry data to stereo pair images, the bundle adjustment and the evaluation, and the generation of OEM and orthoimages.

  • PDF

Apophis Rendezvous Mission: II. Payloads and Operation Scenario

  • Jeong, Minsup;Choi, Young-Jun;Moon, Hong-Kyu;Kim, Myung-Jin;Choi, Jin;Moon, Bongkon;JeongAhn, Youngmin;Lee, Hee-Jae;Baek, Seul-Min;Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2021
  • We plan to visit the Apophis, a Potentially Hazardous Asteroid (PHA). Apophis will have an extremely close encounter with the Earth on April, 2029. At the closest position, Apophis approaches 0.1 lunar distances from the Earth. The science goals are 1) mapping the surface of the asteroid before and after the encounter, 2) measuring surface roughness before and after the encounter, and 3) measuring interplanetary space environments such as magnetic field and dust particles. For the science goal, we are planning to employ five instruments for this mission, which are Polarimetric Asteroid Camera (PolACam), Asteroid Terrain Mapping Camera (MapCam), Laser Altimeter, Dust Particle Detector (DPDetector), Magnetometer (Mag). In this presentation, we plan to give a talk on the instruments.

  • PDF

Area based image matching with MOC-NA imagery (MOC-NA 영상의 영역기준 영상정합)

  • Youn, Jun-Hee;Park, Choung-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.463-469
    • /
    • 2010
  • Since MOLA(Mars Orbiter Laser Altimeter) data, which provides altimetry data for Mars, does not cover the whole Mars area, image matching with MOC imagery should be implemented for the generation of DEM. However, automatic image matching is difficult because of insufficient features and low contrast. In this paper, we present the area based semi-automatic image matching algorithm with MOC-NA(Mars Orbiter Camera ? Narrow Angle) imagery. To accomplish this, seed points describing conjugate points are manually added for the stereo imagery, and interesting points are automatically produced by using such seed points. Produced interesting points being used as initial conjugate points, area based image matching is implemented. For the points which fail to match, the locations of initial conjugate points are recalculated by using matched six points and image matching process is re-implemented. The quality assessment by reversing the role of target and search image shows 97.5 % of points were laid within one pixel absolute difference.