• Title/Summary/Keyword: Large-surfaces

Search Result 655, Processing Time 0.03 seconds

Optimized O2 Plasma Surface Treatment for Uniform Sphere Lithography on Hydrophobic Photoresist Surfaces

  • Yebin Ahn;Jongchul Lee;Hanseok Kwon;Jungbin Hong;Han-Don Um
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.188-194
    • /
    • 2024
  • This paper introduces an optimized oxygen (O2) plasma surface treatment technique to enhance sphere lithography on hydrophobic photoresist surfaces. The focus is on semiconductor manufacturing, particularly the creation of finer structures beyond the capabilities of traditional photolithography. The key breakthrough is a method that makes substrate surfaces hydrophilic without altering photoresist patterns. This is achieved by meticulously controlling the O2 plasma treatment duration. The result is the consistent formation of nano and microscale patterns across large areas. From an academic perspective, the study deepens our understanding of surface treatments in pattern formation. Industrially, it heralds significant progress in semiconductor and precision manufacturing sectors, promising enhanced capabilities and efficiency.

Tribological performance of the laser surface treated CrZrSiN thin films

  • Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.141-142
    • /
    • 2012
  • Recently, surface texturing by atmospheric laser processing has been received lots of attention to improve the tribological performance of various surfaces and this laser texturing of surfaces could be considered in a large extent to improve tribological performance of PVD coated surface. Surface texturing could be performed by various manufacturing techniques such as indentation with hard materials, ion etching, abrasive jet machining, lithography, and Laser Surface Texturing (LST). Out of all these techniques, however it is generally accepted that laser surface texturing (LST) by atmospheric laser processing offers the most promising process as LST is very fast, environmentally-friendly, easy to control the shape and size of the microdimples. In this work various preliminary experimental results from the laser texturing on the PVD-coated steel substrate will be presented. Our results indicated that laser texturing definitely affect the tribological performance of the surfaces and the size as well as pattern type of laser texturing are one of the key factors. From the wear tests against an alumina counterpart ball at room temperature under oil-lubricated condition, laser surface texturing on the CrZrSiN films reduced the friction coefficients by approximately more than 5 times in the case of narrow patterned surfaces.

  • PDF

Transfer Learning Based Real-Time Crack Detection Using Unmanned Aerial System

  • Yuvaraj, N.;Kim, Bubryur;Preethaa, K. R. Sri
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2020
  • Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic precipitation, because strong vertical velocity and cloud bands are developed along isothermal deformation surface.

  • PDF

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1992
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain Is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic Precipitation, because strong vertical velocity and cloud bandy are developed along isothermal deformation surface.

  • PDF

Performance Analysis of Double-Glazed Flat Plate Solar Collector with Cu-based Solar Thermal Absorber Surfaces

  • Lee, Jeong-Heon;Jeong, Da-Sol;Nam, Yeong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.1-157.1
    • /
    • 2016
  • In this work, we experimentally investigated the solar absorption performance of Cu-based scalable nanostructured surfaces and compared their performance with the conventional TiNOX. We fabricated Cu-based nanostructured surfaces with a controlled chemical oxidation process applicable to a large area or complex geometry. We optimized the process parameters including the chemical compounds, dipping time and process temperature. We conducted both lab-scale and outdoor experiments to characterize the conversion efficiency of each absorber surfaces with single and double glazing setup. Lab-scale experiment was conducted with $50mm{\times}50mm$ absorber sample with 1-sun condition (1kW/m2) using a solar simulator (PEC-L01) with measuring the temperature at the absorber plate, cover glass, air gap and ambient. From the lab-scale experiment, we obtained ${\sim}91^{\circ}C$ and $94^{\circ}C$ for CuO and TiNOX surfaces after 1 hr of solar illumination at single glazing, respectively. To measure the absorber performance at actual operating condition, outdoor experiment was also conducted using $110mm{\times}110mm$ absorber sample. We measured the solar flux with thermopile detector (919P-040-50). From outdoor experiment, we observed ${\sim}123^{\circ}C$ and $131^{\circ}C$ for CuO and TiNOX with 0.6 kW/m2 insolation at double glazing, respectively. We showed that the suggested nanostructured CuO solar absorber has near-equivalent collection efficiency compared with the state-of-the-art TiNOX surfaces even with much simpler manufacturing process that does not require an expensive equipment.

  • PDF

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.