DOI QR코드

DOI QR Code

Optimized O2 Plasma Surface Treatment for Uniform Sphere Lithography on Hydrophobic Photoresist Surfaces

  • Yebin Ahn (Department of Chemical Engineering, Kangwon National University) ;
  • Jongchul Lee (Department of Chemical Engineering, Kangwon National University) ;
  • Hanseok Kwon (Department of Chemical Engineering, Kangwon National University) ;
  • Jungbin Hong (Department of Chemical Engineering, Kangwon National University) ;
  • Han-Don Um (Department of Chemical Engineering, Kangwon National University)
  • Received : 2023.12.17
  • Accepted : 2024.01.02
  • Published : 2024.03.01

Abstract

This paper introduces an optimized oxygen (O2) plasma surface treatment technique to enhance sphere lithography on hydrophobic photoresist surfaces. The focus is on semiconductor manufacturing, particularly the creation of finer structures beyond the capabilities of traditional photolithography. The key breakthrough is a method that makes substrate surfaces hydrophilic without altering photoresist patterns. This is achieved by meticulously controlling the O2 plasma treatment duration. The result is the consistent formation of nano and microscale patterns across large areas. From an academic perspective, the study deepens our understanding of surface treatments in pattern formation. Industrially, it heralds significant progress in semiconductor and precision manufacturing sectors, promising enhanced capabilities and efficiency.

Keywords

Acknowledgement

This study was supported by 2021 Research Grant from Kangwon National University. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1C1C1010025). Following are the results of a study on the 'Leaders in INdustry-university Cooperation 3.0' Project, supported by the Ministry of Education and National Research Foundation of Korea.

References

  1. S. Wei, Z. Li, A. John, B. I. Karawdeniya, Z. Li, F. Zhang, K. Vora, H. H. Tan, C. Jagadish, K. Murugappan, A. Tricoli, and L. Fu, Adv. Funct. Mater., 32, 2107596 (2022). doi: https://doi.org/10.1002/ADFM.202107596 
  2. E. Mullen and M. A. Morris, Nanomaterials, 11, 1085 (2021). doi: https://doi.org/10.3390/NANO11051085 
  3. A. V. Vorotyntsev, A. N. Petukhov, M. M. Trubyanov, A. A. Atlaskin, D. A. Makarov, M. S. Sergeeva, I. V. Vorotyntsev, and V. M. Vorotyntsev, Rev. Chem. Eng., 37, 125 (2021). doi: https://doi.org/10.1515/REVCE-2018-0046 
  4. N. Shin, K. L. Kraemer, and J. Dedrick, Ind. Innovation, 24, 280 (2017). doi: https://doi.org/10.1080/13662716.2016.1224708 
  5. T. Manouras and P. Argitis, Nanomaterials, 10, 1593 (2020). doi: https://doi.org/10.3390/NANO10081593 
  6. T. Kozawa, Jpn. J. Appl. Phys., 58, 096502 (2019). doi: https://doi.org/10.7567/1347-4065/AB37FF 
  7. Y.F.C. Chau, C. J. Lin, T. S. Kao, Y. C. Wang, C. M. Lim, N.T.R.N. Kumara, and H. P. Chiang, Results Phys., 17, 103168 (2020). doi: https://doi.org/10.1016/J.RINP.2020.103168 
  8. L. N. Dvoretckaia, A. M. Mozharov, and I. S. Mukhin, J. Phys.: Conf. Ser., 917, 062062 (2017). doi: https://doi.org/10.1088/1742-6596/917/6/062062 
  9. E. A. Vyacheslavova, I. A. Morozov, D. A. Kudryashov, and A. S. Gudovskikh, J. Phys.: Conf. Ser., 1697, 012188 (2020). doi: https://doi.org/10.1088/1742-6596/1697/1/012188 
  10. A. Chandramohan, N. V. Sibirev, V. G. Dubrovskii, M. C. Petty, A. J. Gallant, and D. A. Zeze, Sci. Rep., 7, 40888 (2017). doi: https://doi.org/10.1038/srep40888 
  11. E. Cara, F. F. Lupi, M. Fretto, N. De Leo, M. Tortello, R. Gonnelli, K. Sparnacci, and L. Boarino, Nanomaterials, 10, 280 (2020). doi: https://doi.org/10.3390/NANO10020280 
  12. L. Luo, E. M. Akinoglu, L. Wu, T. Dodge, X. Wang, G. Zhou, M. J. Naughton, K. Kempa, and M. Giersig, Nanotechnology, 31, 245302 (2020). doi: https://doi.org/10.1088/1361-6528/AB7C4C 
  13. M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, Light: Sci. Appl., 6, e16229 (2017). doi: https://doi.org/10.1038/lsa.2016.229 
  14. L. N. Dvoretckaia, A. M. Mozharov, Y. Berdnikov, and I. S. Mukhin, J. Phys. D: Appl. Phys., 55, 09LT01 (2021). doi: https://doi.org/10.1088/1361-6463/AC368D 
  15. J. Y. Choi and C. B. Honsberg, Appl. Sci., 8, 1720 (2018). doi: https://doi.org/10.3390/APP8101720 
  16. P. Dentinger, G. Cardinale, C. Henderson, A. Fisher, and A. Ray-Chaudhuri, Photoresist Film Thickness for Extreme Ultraviolet Lithography, (2000). doi: https://doi.org/10.1117/12.390098 
  17. O. Bruggemann, K. Haupt, L. Ye, E. Yilmaz, and K. Mosbach, J. Chromatogr. A, 889, 15 (2000). doi: https://doi.org/10.1016/S0021-9673(00)00350-2 
  18. Z. Zhong, Y. Yin, B. Gates, and Y. Xia, Adv. Mater., 12, 206 (2000). doi: https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5 
  19. F. J. Wendisch, M. Abazari, H. Mahdavi, M. Rey, N. Vogel, M. Musso, O. Diwald, and G. R. Bourret, ACS Appl. Mater. Interfaces, 12, 13140 (2020). doi: https://doi.org/10.1021/ACSAMI.9B21466
  20. F. J. Wendisch, M. Rey, N. Vogel, and G. R. Bourret, Chem. Mater., 32, 9425 (2020). doi: https://doi.org/10.1021/ACS.CHEMMATER.0C03593 
  21. M. Rey, M. A. Fernandez-Rodriguez, M. Karg, L. Isa, and N. Vogel, Acc. Chem. Res., 53, 414 (2020). doi: https://doi.org/10.1021/ACS.ACCOUNTS.9B00528 
  22. J.S.J. Tang, R. S. Bader, E.S.A. Goerlitzer, J. F. Wendisch, G. R. Bourret, M. Rey, and N. Vogel, ACS Omega, 3, 12089 (2018). https://doi.org/10.1021/ACSOMEGA.8B01985 
  23. C. Satriano, G. Marietta, and B. Kasemo, Surf. Interface Anal., 40, 649 (2008). doi: https://doi.org/10.1002/SIA.2764 
  24. X. Zhang, L. Lei, B. Xia, Y. Zhang, and J. Fu, Electrochim. Acta, 54, 2810 (2009). doi: https://doi.org/10.1016/J.ELECTACTA.2008.11.029