• 제목/요약/키워드: Large-surfaces

검색결과 653건 처리시간 0.027초

거친 표면 형상측정을 위한 큰 등가파장 회절격자 간섭계 (Diffraction grating interferometer of large equivalent wavelength for flatness testing of rough surfaces)

  • 황태준;김승우
    • 한국광학회지
    • /
    • 제15권1호
    • /
    • pp.56-62
    • /
    • 2004
  • 거친 표면의 형상을 측정하기 위해서 큰 등가파장 회절격자간섭계를 구성하였다. 제안된 시스템은 두 개의 투과회적격자를 사용해서 두 광을 측정물체에 각각 다른 각으로 경사지게 입사시켜서, 그 입사각에 따른 큰 등가파장의 간섭무늬를 얻는다. 이런 등가파장 간섭계는 기존의 광학 간섭계보다 넓은 영역에 걸쳐서 거친 표면을 빠른 시간에 측정할 수 있다. 제안된 시스템은 편광광속분할기와, 광속분할기, 프리즘을 사용해서, 불필요한 광을 제거하는 부분을 설계하여, 회절격자의 불필요한 회절광을 최소화하고, 회절격자의 형상으로 인한 시스템 오차를 줄였다. 뿐만 아니라, 큰 작동거리를 가지며 정렬이 쉽다. 측정정밀도를 향상시키기 위하여 위상편이법을 도입하였고, 등가파장보정법을 제안하였다. 실험을 통해서 측정시스템을 평가해보았다.

이중으로 텍스쳐 된 표면에 충돌하는 액적의 동적 특성 (Dynamic Characteristics of Droplet Impinging on Multi-layer Texture Surfaces)

  • 문주현;이성혁
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2016
  • This study presents the dynamic characteristics of an impinging droplet on hydrophobic and hydrophilic surfaces with various texture area fractions. The flat surface was fabricated by using the drilling technique to make micro-meter hole-patterned surfaces, which shows hydrophobic textured surfaces. Moreover, the hydrophilic textured surfaces were manufactured by anodizing technique on the micro-meter hole-patterned surfaces to generate multi-layer surfaces. Impinging droplet experiments were conducted for various hole-patterned surfaces, with changing impact velocity and texture area fractions. It is observed that an anodizing technique increases wettability by decrease in hole diameter on the textured surfaces. However, micro-drilled surfaces decreases wettability because the hole diameter was so large that air can be trapped under the holes. In addition, the maximum spreading diameter decreases with the texture area fraction for the micro-drilled surfaces because of decrease in wettability.

구연산의 적용시간에 따른 임플란트 표면변화에 대한 주사전자현미경적 연구 (Scanning Electron Microscopic Study of the Effects of Citric Acid on the Change of Implant Surface According to Application Time)

  • 송우석;권영혁;이만섭;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.697-709
    • /
    • 2002
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, titanium plasma-sprayed surface, and sand-blasted, large grit, acid etched surface were utilized. Implant surface was rubbed with pH 1 citric acid for $\frac{1}{2}$ min., 1 min., 1 $\frac{1}{2}$ min., 2 min., and 3min, respeaively in the test group and implant surface was not treated in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In titanium plasma-sprayed surfaces, round or amorphous particles were deposited irregularly. The irregularity of titanium plasma-sprayed surfaces conditioned with pH 1 citric acid was lessened and the cracks were increased relative to the application time of pH 1 citric acid. 3. Sand-blasted, large grit, acid etched surfaces showed the macro/micro double roughness. The application of pH 1 citric acid didn't change the characteristics of the sand-blasted, large grit, acid etched surfaces. In conclusion, the application of pH 1 citric acid to titanium plasma-sprayed surface is improper. And pure titanium machined surface implants and sand-blasted, large grit, acid etched surface implants can he treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

거친 면 접촉의 정적 마찰계수 해석 (Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

  • Li, Lin-Jie;Kim, So-Nam;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.235-240
    • /
    • 2016
  • PURPOSE. In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS. The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS. Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION. This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.

길들이기 과정과 표면파괴 과정에서의 잔류응력 변화 (The Changes of Residual Stresses on Sliding Surfaces during Break-in and Scuffing)

  • 김진욱;이영제
    • Tribology and Lubricants
    • /
    • 제16권3호
    • /
    • pp.182-187
    • /
    • 2000
  • In this paper the residual stresses on lubricated sliding surfaces were measured during break-in procedure and up to scuffing by the X-ray diffraction method. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were done using a constant load. In the break-in procedure the loads were increased from very low values in several steps. It was found that the sliding surfaces with break-in represented relatively higher values of residual compressive stresser than those without break-in. The residual stresses below the surfaces showed the small amount of stress increases. The results of scuffing tests with and without break-in showed the same trends as break-in tests did. However, in case of tests with break-in procedure the stresses below the surfaces showed very large increases in the residual compressive stresses. From the tests of break-in and scuffing, it was found that the increases in scuffing lives were related with the increases of residual stresses on the lubricated sliding surfaces with break-in.

대공간의 바닥 복사 난방 적용에 관한 연구 (A Study on Application of Radiant Floor Heating in Large Space)

  • 안민희;최창호
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.79-85
    • /
    • 2007
  • This paper addresses the indoor air quality when radiant floor heating is applied in large space. Radiant heat exchange between surfaces depends on the orientation and the temperature of the surfaces. Also, the temperature and the radiant characteristic of the wall and the roof that face the floor have great influence on the indoor air environment due to the largeness of the wall and the roof in large spaces. In this study, we simulate a test-cell(25X20X10) using a ies YE And using a CFD(microflo in VE), an indoor air environment was investigated to establish the optimum temperature of floor. At the first time of the heating, high floor temperature is demanded. At the middle of the heating, however, the temperature of the residential space was formed appropriately, although the temperature of the floor was set low.

대면적 미세형상 복합 가공기의 요소기술 (Element Technology of the Ultra-Precision Machine Tools for Machining the Large Surface Micro Features)

  • 송창규;박천홍;황주호;김병섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.86-93
    • /
    • 2005
  • In this paper, we discuss the merits of mechanical machining to generate micro features on large surfaces. An overseas technology trend related to the micro machining and dedicated machinery is also presented. We provide an overview of what characteristics the machinery is required to have to generate micro features on large surfaces and what kind of technical barriers need to be overcome to put the technology to practical use.

  • PDF

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.