• 제목/요약/키워드: Large-scale optimization

검색결과 375건 처리시간 0.025초

프리스트레스트 프리캐스트 더블 티형보의 최적설계 (Design and Optimization of Prestressed Precast Double-tee Beams)

  • 유승룡;민창식
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.57-67
    • /
    • 1999
  • Optimization scheme is presented for the design of precast prestressed double-tee beams used as slabs in the parking or market structures. The objective considered is defined by a function that minimizes the hight of the double-tee beam, including the prefabricated element and the concrete topping poured in a second phase. The Sequential Quadratic Programming method is adopted to solve the problem. As an example 12 double-tee beams are designed with the design loads of the current design code of our country. The results from optimization process show that at least 29cm less in overall height than that designed by PCI design handbook. The section determined from the optimization process was refined for practical considerations. A MathCad 7.0 Pro Spreadsheet was prepared to verify all ACI requirements for flexure, shear and deflections. Flexural tests are performed on four full-scale 12.5m prototype models and show that all the specimens are fully comply the flexural strength requirements as specified by ACI 318-95. The present optimization scheme can be used for wider application of the design of precast prestressed double-tee beams with different materials and configurations particularly for in a large scale or for important designs.

연결식 대형시스템을 위한 분산 동적 표면 제어 (Decentralized Dynamic Surface Control for Large-Scale Interconnected Systems)

  • 송봉섭
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.339-345
    • /
    • 2006
  • An analysis methodology of Decentralized Dynamic Surface Control (DDSC) for the large-scale interconnected nonlinear systems is presented in this paper. While the centralized DSC approach proposed in [14] has a difficulty to check the quadratic stability for the large-scale systems numerically due to dramatic increases of the order of overall augmented error dynamics, DDSC is relatively easy to check the quadratic stability since lower order error dynamics of individual subsystems are used. Then, a systematic procedure for designing DDSC will be developed. Furthermore, after a quadratic function containing a reachable set is defined, it will be calculated numerically to indicate the performance of DDSC in the framework of convex optimization. Finally an illustrative example will be given for showing the advantages of DDSC compared with other decentralized nonlinear control techniques.

민감도 분석에 기초한 대규모 전력계통의 예방정비계획 방법론 개발 (Large-scale Generator Maintenance Scheduling via Sensitivity Analysis Method)

  • 정만호;박종배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1020-1023
    • /
    • 1998
  • This paper presents a new approach to large-scale optimal generator maintenance scheduling. To do this, we developed a kind of discrete sensitivity index of each generator by using difference of objective fuction when it is on and off status. Based on the sensitivity value, we applied the conventional priority approach as an optimization method in the order of each generator's sensitivity measure. By applying the developed method, we can efficiently search the state space and dramatically reduce the computation time in a large scale power system.

  • PDF

Optimal analysis and design of large-scale domes with frequency constraints

  • Kaveh, A.;Zolghadr, A.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.733-754
    • /
    • 2016
  • Structural optimization involves a large number of structural analyses. When optimizing large structures, these analyses require a considerable amount of computational time and effort. However, there are specific types of structure for which the results of the analysis can be achieved in a much simpler and quicker way thanks to their special repetitive patterns. In this paper, frequency constraint optimization of cyclically repeated space trusses is considered. An efficient technique is used to decompose the large initial eigenproblem into several smaller ones and thus to decrease the required computational time significantly. Some examples are presented in order to illustrate the efficiency of the presented method.

발전기 이산 민감도를 이용한 효율적인 우선순위법의 대규모 예방정비계획 문제에의 적용 연구 (An Effective Priority Method Using Generator's Discrete Sensitivity Value for Large-scale Preventive Maintenance Scheduling)

  • 박종배;정만호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.234-240
    • /
    • 1999
  • This paper presents a new approach for large-scale generator maintenance scheduling optimizations. The generator preventive maintenance scheduling problems are typical discrete dynamic n-dimensional vector optimization ones with several inequality constraints. The considered objective function to be minimized a subset of{{{{ { R}^{n } }}}} space is the variance (i.g., second-order momentum) of operating reserve margin to levelize risk or reliability during a year. By its nature of the objective function, the optimal solution can only be obtained by enumerating all combinatorial states of each variable, a task which leads to computational explosion in real-world maintenance scheduling problems. This paper proposes a new priority search mechanism based on each generator's discrete sensitivity value which was analytically developed in this study. Unlike the conventional capacity-based priority search, it can prevent the local optimal trap to some extents since it changes dynamically the search tree in each iteration. The proposed method have been applied to two test systems (i.g., one is a sample system with 10 generators and the other is a real-world lage scale power system with 280 generators), and the results anre compared with those of the conventional capacith-based search method and combinatorial optimization method to show the efficiency and effectiveness of the algorithm.

  • PDF

규격부재로 이루어진 대형 철골구조물의 최적설계를 위한 알고리즘 (An Optimal Design Algorithm for The Large-Scale Structures with Discrete Steel Sections)

  • 이환우;최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1990
  • An optimization method has been developed to find the minimum weight design of steel building structures which consist of the commercially available discrete sections. In this study, an emphasis was particularly placed on the practical applicability of optimization algorithm in engineering practice. The structure Is optimized through element optimization under the element level constraints first and then, if there is any violation of structural level constraints, it is adequately compensated by the constraint error correction vector obtained through the sensitivity analysis. A scaling procedure is introduced for the problems of large violated displacement constraint. The oscillation control in the objective function is also discussed. By dividing the available H-sections into two groups based on their section characteristics, much improved relationships between section variables were obtained and used efficiently in searching the optimum section in the section table.

  • PDF

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

Optimal design of double layer barrel vaults considering nonlinear behavior

  • Gholizadeh, Saeed;Gheyratmand, Changiz;Davoudi, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1109-1126
    • /
    • 2016
  • The present paper focuses on size optimization of double layer barrel vaults considering nonlinear behavior. In order to tackle the optimization problem an improved colliding bodies optimization (ICBO) algorithm is proposed. The important task that should be achieved before optimization of structural systems is to determine the best form having the least cost. In this study, an attempt is done to find the best form then it is optimized considering linear and non-linear behaviors. In the optimization process based on nonlinear behavior, the geometrical and material nonlinearity effects are included. A large-scale double layer barrel vault is presented as the numerical example of this study and the obtained results indicate that the proposed ICBO has better computational performance compared with other algorithms.

협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계 (Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization)

  • 조효남;민대홍;권우성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

자동미분을 이용한 분리시스템동시최적화기법의 개선 (Improved Concurrent Subspace Optimization Using Automatic Differentiation)

  • 이종수;박창규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.359-369
    • /
    • 1999
  • The paper describes the study of concurrent subspace optimization(CSSO) for coupled multidisciplinary design optimization (MDO) techniques in mechanical systems. This method is a solution to large scale coupled multidisciplinary system, wherein the original problem is decomposed into a set of smaller, more tractable subproblems. Key elements in CSSO are consisted of global sensitivity equation(GSE), subspace optimization (SSO), optimum sensitivity analysis(OSA), and coordination optimization problem(COP) so as to inquiry valanced design solutions finally, Automatic differentiation has an ability to provide a robust sensitivity solution, and have shown the numerical numerical effectiveness over finite difference schemes wherein the perturbed step size in design variable is required. The present paper will develop the automatic differentiation based concurrent subspace optimization(AD-CSSO) in MDO. An automatic differentiation tool in FORTRAN(ADIFOR) will be employed to evaluate sensitivities. The use of exact function derivatives in GSE, OSA and COP makes Possible to enhance the numerical accuracy during the iterative design process. The paper discusses how much influence on final optimal design compared with traditional all-in-one approach, finite difference based CSSO and AD-CSSO applying coupled design variables.

  • PDF