• 제목/요약/키워드: Large-scale model

검색결과 2,261건 처리시간 0.032초

대규모 도시부 교통망에서의 이동류별 회전 지체를 고려한 통행배정연구 (A Traffic Assignment With Intersection Delay for Large Scale Urban Network)

  • 강진동;우왕희;김태균;홍영석;조중래
    • 대한교통학회지
    • /
    • 제31권4호
    • /
    • pp.3-17
    • /
    • 2013
  • 본 연구는 대규모 교통망에서 통행배정시 신호교차로에 의한 지체를 반영한 통행배정을 수행하여 보다 현실 모사가 가능한 통행배정기법을 개발 하는 것이다. 실제로 도시부나 단속류에서 발생하는 통행시간 및 비용의 증가 원인은 많은 부분이 교차로 지체에 의한 정지 혹은 혼잡에 의해 발생함에도 불구하고 기존의 통행배정 모형은 이를 반영하지 못하고 있었다. 본 연구에서 개발한 신호교차로 지체 반영 통행배정 모형은 기존의 통행배정모형과 한국도로 용량편람의 신호교차로 지체 산정 방법을 결합하여 구축하였다. 다양한 모의실험을 통해 이 모형이 실제 가로망에 적용이 가능한 모형임을 보였다. 따라서 본 모형은 대규모 지역에서의 교통정책 및 교통시설의 변화 등에 교차로 지체를 적용하여 분석할 수 있을 것으로 판단된다.

대규모 산지유역 토양침식 평가를 위한 SEMMA 개선 (SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale)

  • 신승숙;박상덕;이종설;이규송
    • 한국수자원학회논문집
    • /
    • 제46권9호
    • /
    • pp.885-896
    • /
    • 2013
  • 산지의 토양침식 모형인 SEMMA를 대규모 산지유역에 적용하기 위해서는 모형의 개선이 필요하다. 본 연구에서는 원래 SEMMA의 기본구조와 주요 매개변수의 산정방법을 설명하였고, 적용범위 확대를 위한 개선 매개변수들을 제시하였다. 특히 광범위한 지역에 대해 NDVI를 활용하기 위하여 식생구조지수 대신 식생피복지수를 사용하여 개선된 모형 SEMMA-Ic을 개발하였다. 개선모형의 모의결과 상관계수와 모의효율계수는 본래 모형보다 다소 감소하였다. 그러나 개선모형을 유역에 적용한 결과 실측값에 근접하게 모의했고, 토사유출량이 많은 경우에는 과소 예측하는 경향을 보였다. 따라서 산지 사면에서 개발한 토양침식 모형을 유역에 적용하기 위해서는 수로침식에 대한 추가적인 연구가 필요하다.

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

A Large Sky Simulator : A Reproduction of CIE Sky Condition and Daylighting Evaluation using Scale Model

  • Yu, In-Hye;Ahn, Hyun-Tae;Kim, Jeong-Tai
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.1-10
    • /
    • 2007
  • KH University has developed a large sky simulator which is its scale suits international standard. To verify the reliability of the sky simulator, the luminance of 36 points on the inner sky surface was measured and compared with the CIE standard overcast sky model. It was found that the sky simulator can reproduce the CIE standard overcast sky condition with 1.8[%] of mean difference. To identify the differences of daylighting performance, scale model measurements were taken under a real sky and in a sky simulator. Under overcast sky conditions, two kinds of scale model experiments were conducted by using the photometric sensor Li-cor. Firstly, a 1/20 scale model of a side-lit office room 4.9[m] wide, 7.2[m] long, and 2.6[m] high was created. Five measurement points were set at 1.2[m], 2.4[m], 3.6[m], 4.8[m], and 6.0[m] from the window. The mean difference of the light factor between the sky simulator and real sky was 7.1[%]. Secondly, a 1/30 scale model of a top-lit atrium 15[m] wide, 15[m] long, and 15[m] high was created. The measurement point was set at center of the room and the well indexes of the model were set in 5 types. The mean difference of the light factor between the sky simulator and real sky was 1.7[%]. This proved that the sky simulator is fully accurate and usable for daylighting research.

저전압부하차단시스템(UVLS) 모델을 이용한 수도권 부하차단용량 산정에 관한 연구 (A study on Application of UVLS model to decrease the load shadding in Seoul Area)

  • 강대언;이백석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.184-186
    • /
    • 2005
  • Increasement of power demand rapid industrial growth has led the expansion of power system, and it caused construction of large power transmission line(like 765kV T/L) and substation. If there are T/L faults (route contingency etc), it lead to the large scale black out in SEOUL AREA (the center of load). To minimize damage which caused by the large scale black out, KEPCO selects the method of load shadding. In this work, instead of general method of load shadding, We study the application of UVLS model to decrease the load shadding in SEOUL AREA. The study result of using the UVLS model showed that the amont of load shadding can be decreased about 400 MW compare to the existing load shadding system.

  • PDF

The use of small scale model testing to compare connection methods of steel purlins

  • Urquhart, Stephen M.;Kavanagh, Kenneth T.
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.571-582
    • /
    • 1998
  • Testing of steel roof purlins is usually performed on full scale models in large vacuum test rigs. To undertake a comparison between web cleat connected purlins and flange bolted purlins a series of tests were performed on a 1:4 small scale model vacuum test rig. Various modelling issues need to be addressed to ensure reasonable comparison with actual constructed roof framing methods but still be suitable for an economical comparison between the connection methods. Model test results were supported by, and found to be in reasonable agreement with, deflection predictions from computer models based on finite element methods. This paper discusses the testing methods adopted and the value of small scale model testing programs as a means of obtaining comparisons between framing options.

광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델 (A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments)

  • 남창주;강재현;도낙주
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.