• Title/Summary/Keyword: Large-scale model

Search Result 2,261, Processing Time 0.03 seconds

Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development (모델기반 시스템공학을 응용한 대형복합기술 시스템 개발)

  • Park, Joong-Yong;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

A Study on Optimal Size Evaluation Model for Large Scale SMES System (저장용 초전도 에너지 저장장치의 최적규모 산정을 위한 투자모형 수립에 관한 연구)

  • 김정훈;김주락;장승찬;임재윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.215-222
    • /
    • 1999
  • Integrating energy storage into electlic power system has long been recognized as a way to maximize a utility's g generation and transmission capacity, Electlic power can be stored during off-peak periods and then recovered during p peak conditions to offset the need for larger generation and transmission capacity, Currently large-scale SMES for the p purpose of energystorage which can be also se$\pi$ed by battery storage or flywheel system has been developed, and near f future it will be integrated into power grids, This paper presents an investment analysis on large-scale SMES which c can determine its optimal size in power systems, In operation model. least generation cost for energy storage in SMES a and its mar밍nal capacity cost can be calculated using the discreteness of probability distribution for power availability I Investment decisions are made by the maximum p디nciple and the case study shows the optimal operation and realistic i information on the proper size of large-scale SMES in power systems.

  • PDF

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

Parallel Computing Simulation of Large-Scale Polymer Electrolyte Fuel Cells (대면적 고분자전해질연료전지의 병렬계산 시뮬레이션)

  • Gwak, Geon-Hui;Chippar, Purushothama;Kang, Kyung-Mun;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.868-877
    • /
    • 2011
  • This paper presents a parallel computing methodology for polymer electrolyte fuel cells (PEFCs) and detailed simulation contours of a real-scale fuel cell. In this work, a three-dimensional two-phase PEFC model is applied to a large-scale 200 $cm^2$ fuel cell geometry that requires roughly 13.5 million grid points based on grid-independence study. For parallel computing, the large-scale computational domain is decomposed into 12 sub-domains and parallel simulations are carried out using 12 processors of 2.53 GHz Intel core i7 and 48GB RECC DDR3-1333. The work represents the first attempt to parallelize a two-phase PEFC code and illustrate two-phase contours in a representative industrial cell.

Numerical Modeling for Turbulent Partially Premixed Flames (난류 부분 예혼합 화염장에 대한 수치 모델링)

  • Kim, Hoo-Joong;Kim, Yomg-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.191-194
    • /
    • 2003
  • The present study is focused on the subgrid scale combustion model in context with a Large Eddy Simulation. In order to deal with detailed chemical kinetic, the level-set method based on a flamelet model is addressed. In this model, the flame front is treated as an interface, represented by an iso-surface of a scalar field G. This iso-surface is convected by the velocity field and its filtered quantities are include the turbulent burning velocity, which is to be modelled. For modelling the turbulent burning velocity, an equation for the length-scale of the sub-filter flame front fluctuations was developed. The formulations and issues for the turbulent premixed and partially premixed flames are addressed in detail.

  • PDF

An Advanced User-Construction Requirement Within the EFD for the Development of Large-scale Information Systems

  • Park, Won-Seok;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.723-735
    • /
    • 2003
  • This research focuses ell an approach for the building of a requirements model for the development of large-scale information systems. It will suggest a set of requirements engineering processes as a procedure of the implementation for building the requirements model. It will also emphasise the evaluation requirements model aimed to refine and complete the requirements model by the different user groups as a cross reference. This paper provides an advanced user-construction requirements within the Event Flow Diagram as a set of requirements engineering process.

  • PDF

Performance Trial-Test of the Full-Scale Driving Pump for the Large Cavitation Tunnel(LCT) (대형캐비테이션터널(LCT) 실물 구동펌프 성능시운전)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.428-434
    • /
    • 2015
  • The objective of the present study is to analyze the results of the trial-test for the full-scale driving pump, which is arranged in the LCT (Large Cavitation Tunnel). Firstly, the reasons of selecting the final design pump are introduced in terms of the performance analysis in model tests. The trial-test items for the full-scale driving pump are measurements of output current/voltage at the inverter of the main motor and the flow velocity in the LCT test section. The test results show the increase in flow rate of about 10.7% and the decrease in pump head of about 26%, compared with those of final design-pump specification. The motor power has the margin of about 22%. The performance analysis for the full-scale pump is conducted using the commercial code (CFX-10). The delivered power calculated with CFX-10 shows good agreement with that extracted from the full-scale pump test. It is found that CFX-10 is useful to analyze a full-scale pump.

On the Spectral Eddy Viscosity in Isotropic Turbulence

  • Park Noma;Yoo Jung Yu;Choi Haecheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.105-106
    • /
    • 2003
  • The spectral eddy viscosity model is investigated through the large eddy simulation of the decaying and forced isotropic turbulence. It is shown that the widely accepted 'plateau and cusp' model overpredicts resolved kinetic energy due to the amplification of energy at intermediate wavenumbers. Whereas, the simple plateau model reproduces a correct energy spectrum. This result overshadows a priori tests based on the filtered DNS or experimental data. An alternative method for the validation of subgrid-scale model is discussed.

  • PDF

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.