• Title/Summary/Keyword: Large-scale Scientific Data

Search Result 53, Processing Time 0.025 seconds

Implementation of AMGA GUI Client Toolkit : AMGA Manager (AMGA GUI Client 툴킷 구현 : AMGA Manager)

  • Huh, Tae-Sang;Hwang, Soon-Wook;Park, Guen-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.421-433
    • /
    • 2012
  • AMGA service, which is one of the EMI gLite middleware components, is widely used for analysis of distributed large scale experiments data as metadata repository by scientific and technological researchers and the use of AMGA is extended farther to include general industries needing metadata Catalogue as well. However AMGA, based unix and Grid UI, has the weakness of being absence of general-purpose user interfaces in comparison to other commercial database systems and that's why it's difficult to use and diffuse it although it has the superiority of the functionality. In this paper, we developed AMGA GUI toolkit to provide work convenience using object-oriented modeling language(UML). Currently, AMGA has been used as the main component among many user communities such as Belle II, WISDOM, MDM, and so on, but we expect that this development can not only lower the barrier to entry for AMGA beginners to use it, but lead to expand the use of AMGA service over more communities.

Changes in Localized Heavy Rain that Cause Disasters Due to Climate Crisis - Focusing on Gwangju (기후 위기로 인한 재난을 야기하는 집중호우 변화 - 광주광역시를 중심으로)

  • Kim, Youn-Su;Chang, In-Hong;Song, Kwang-Yoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.162-175
    • /
    • 2021
  • Recently, due to global warming, the average temperature of the earth has risen, and the glaciers in the Antarctic and Arctic melt, leading to a rise in sea level, which is accompanied by powerful natural disasters such as strong typhoons and tsunamis around the world. Accordingly, a precipitation in summer in Korea also increased, and changes in the form of precipitation were showed with the increase. Compared to the past, the frequency of localized heavy rain is increasing, and the damage from flooding and flooding is increasing day by day. In this study, based on the precipitation data measured in hours from May to September from 2016 to 2021 according to the change in the precipitation form, according to the nature of the torrential rain investigated the change in the summer precipitation form. In addition, the trend of localized heavy rain from 2016 to 2021 was confirmed by classifying them into two types: localized heavy rains caused by cyclones and weather front, and by typhoons and large-scale cyclones. Through this, the change in precipitation due to the climate crisis should not be viewed as a single phenomenon, it should be reflected and discussed on our life focused on scientific and technological development, and it should be used as a stepping stone for realizing a humanistic.

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

Effect of Floor Space Allowance on Pig Productivity across Stages of Growth: A Field-scale Analysis

  • Lee, Joon H.;Choi, Hong L.;Heo, Yong J.;Chung, Yoon P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.739-746
    • /
    • 2016
  • A total of 152 pig farms were randomly selected from the five provinces in South Korea. During the experiment, the average temperature and relative humidity was $24.7^{\circ}C$ and 74% in summer and $2.4^{\circ}C$ and 53% in winter, respectively. The correlation between floor space allowance (FSA) and productivity index was analyzed, including non-productive sow days (NPD), number of weaners (NOW), survival rate (SR), appearance rate of A-grade pork (ARA), and days at a slaughter weight of 110 kg (d-SW) at different growth stages. The objectives of the present study were i) to determine the effect of FSA on the pig productivity index and ii) to suggest the minimum FSA for pigs based on scientific baseline data. For the pregnant sow, NPD could be decreased if pregnant sows were raised with a medium level (M) of FSA (3.10 to $3.67m^2/head$) while also keeping the pig house clean which improves hygiene, and operating the ventilation system properly. For the farrowing sows, the NOW tended to decrease as the FSA increased. Similarly, a high level of FSA (H) is significantly negative with weaner SR of farrowing sows (p-value = 0.017), indicating this FSA tends to depress SR. Therefore, a FSA of 2.30 to $6.40m^2/head$ (very low) could be appropriate for weaners because a limited space can provide a sense of security and protection from external interruptions. The opposite trend was observed that an increase in floor space (> $1.12m^2/head$ leads to increase the SR of growing pigs. For the fattening pigs, H level of FSA was negatively correlated with SR, but M level of FSA was positively correlated with SR, indicating that SR tended to increase with the FSA of 1.10 to $1.27m^2/head$. In contrast, ARA of male fattening pigs showed opposite results. H level of FSA (1.27 to $1.47m^2/head$) was suggested to increase productivity because ARA was most affected by H level of space allowance with positive correlation ($R^2=0.523$). The relationship between the FSA and d-SW of fattening pigs was hard to identify because of the low $R^2$ value. However, the farms that provided a relatively large floor space (1.27 to $1.54m^2/head$) during the winter period showed d-SW was significantly and negatively affected by FSA.

Parallel Cell-Connectivity Information Extraction Algorithm for Ray-casting on Unstructured Grid Data (비정렬 격자에 대한 광선 투사를 위한 셀 사이 연결정보 추출 병렬처리 알고리즘)

  • Lee, Jihun;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • We present a novel multi-core CPU based parallel algorithm for the cell-connectivity information extraction algorithm, which is one of the preprocessing steps for volume rendering of unstructured grid data. We first check the synchronization issues when parallelizing the prior serial algorithm naively. Then, we propose a 3-step parallel algorithm that achieves high parallelization efficiency by removing synchronization in each step. Also, our 3-step algorithm improves the cache utilization efficiency by increasing the spatial locality for the duplicated triangle test process, which is the core operation of building cell-connectivity information. We further improve the efficiency of our parallel algorithm by employing a memory pool for each thread. To check the benefit of our approach, we implemented our method on a system consisting of two octa-core CPUs and measured the performance. As a result, our method shows continuous performance improvement as we add threads. Also, it achieves up to 82.9 times higher performance compared with the prior serial algorithm when we use thirty-two threads (sixteen physical cores). These results demonstrate the high parallelization efficiency and high cache utilization efficiency of our method. Also, it validates the suitability of our algorithm for large-scale unstructured data.

Assessment of a fresh submarine groundwater discharge in eastern Jeju Island using analytic seawater intrusion models (해수침투 해석해 기반 제주 동부 담해저 지하수 유출의 정량적 산정)

  • Kim, Il-Hwan;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1011-1020
    • /
    • 2022
  • Previous studies for the assessment of submarine groundwater discharge (SGD) were perfomed for areas where a large amount of SGD was observed. Newly developed assessment methods were proposed that was based on an analytic solution using sharp interface model. The proposed mathematical equations used the existing observed groundwater level and hydrogeological data of Jeju Island as input data. The quantitatively assessed FSGD values were compared to the basin-scale recharge estimation values in Seong-San area in eastern Jeju. As a result of the study, it was estimated that the amount of FSGD in the Seongsan area ranges from about 2.65 to 9.15% of the amount of areal-recharge. Through the analysis of the FSGD combined with the analytic model, it is to be provided as a scientific tool to establish a more reasonable coastal water resource management plan.

Efficacy and Safety of Miniscalpel Acupuncture in Knee Degenerative Osteoarthritis Patients: A Study Protocol for a Randomized Controlled Pilot Trial (퇴행성 슬관절염 환자에 대한 도침요법의 효능 및 안전성 연구: 임상예비연구)

  • Jun, Seungah;Park, Mu Seob;Oh, Se Jung;Lee, Jung Hee;Gong, Han Mi;Choi, Seong Hun;Hwangbo, Min;Lee, Hyun-Jong;Kim, Jae Soo
    • Korean Journal of Acupuncture
    • /
    • v.33 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Objectives : The Knee degenerative osteoarthritis patients are not satisfied with the conventional therapies of KDOA, which results in the use of alternative therapies. The miniscalpel acupuncture is effective in treating chronic soft tissue, releasing contractures. However, there is little scientific evidence supporting the use of miniscalpel acupuncture in knee degenerative osteoarthritis. This study was designed to obtain basic data for a further large-scale trial as well as provide information about the feasibility of miniscalpel acupuncture in knee degenerative osteoarthritis patients. Methods : We describe the protocol for a randomized controlled pilot clinical trial of 5 weeks duration. Twenty patients will be recruited and randomly allocated to two treatment groups: miniscalpel acupuncture treatment(experimental group); and acupuncture and electro-acupuncture treatment(control group). Miniscalpel acupuncture will be performed once with a 1-week interval for 3 weeks. Electro-acupuncture will be administered twice per week for a period of 3 weeks. The primary outcomes will be measured by visual analogue scale and range of motion. The secondary outcomes will be short-form McGill Pain Questionnaire and Western Ontario and McMaster Universities Osteoarthritis Index. Both primary and secondary outcomes will be measured at baseline and at 1, 2, 3 and 5 weeks(i.e. 2 weeks after treatment completion). Conclusions : This pilot study will provide a basic foundation for a future large-scale trial as well as information about the feasibility of miniscalpel acupuncture in knee degenerative osteoarthritis.

Marine ecosystem risk assessment using a land-based marine closed mesocosm: Proposal of objective impact assessment tool (육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시)

  • Yoon, Sung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.88-99
    • /
    • 2021
  • In this study, a land-based marine closed mesocosm (LMCM) experiment was performed to objectively assess the initial stability of an artificial ecosystem experiment against biological and non-biological factors when evaluating ecosystem risk assessment. Changes in the CV (coefficient of value) amplitude were used as data to analyze the stability of the experimental system. The CV of the experimental variables in the LMCM groups (200, 400, 600, and 1,000 L) was maintained within the range of 20-30% for the abiotic variables in this study. However, the difference in CV amplitude in biological factors such as chlorophyll-a, phytoplankton, and zooplankton was high in the 600 L and 1,000 L LMCM groups. This result was interpreted as occurring due to the lack of control over biological variables at the beginning of the experiment. In addition, according to the ANOVA results, significant differences were found in biological contents such as COD (chemical oxygen demand), chlorophyll-a, phosphate, and zooplankton in the CV values between the LMCM groups(p<0.05). In this study, the stabilization of biological variables was necessary to to control and maintain the rate of changes in initial biological variables except for controllable water quality and nutrients. However, given the complexity of the eco-physiological activities of large-scale LMCMs and organisms in the experimental group, it was difficult to do. In conclusion, artificial ecosystem experiments as a scientific tool can distinguish biological and non-biological factors and compare and analyze clear endpoints. Therefore, it is deemed necessary to establish research objectives, select content that can maintain stability, and introduce standardized analysis techniques that can objectively interpret the experimental results.