DOI QR코드

DOI QR Code

Assessment of a fresh submarine groundwater discharge in eastern Jeju Island using analytic seawater intrusion models

해수침투 해석해 기반 제주 동부 담해저 지하수 유출의 정량적 산정

  • Kim, Il-Hwan (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chang, Sun Woo (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 김일환 (한국건설기술연구원 수자원하천연구본부) ;
  • 장선우 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2022.10.25
  • Accepted : 2022.11.02
  • Published : 2022.12.31

Abstract

Previous studies for the assessment of submarine groundwater discharge (SGD) were perfomed for areas where a large amount of SGD was observed. Newly developed assessment methods were proposed that was based on an analytic solution using sharp interface model. The proposed mathematical equations used the existing observed groundwater level and hydrogeological data of Jeju Island as input data. The quantitatively assessed FSGD values were compared to the basin-scale recharge estimation values in Seong-San area in eastern Jeju. As a result of the study, it was estimated that the amount of FSGD in the Seongsan area ranges from about 2.65 to 9.15% of the amount of areal-recharge. Through the analysis of the FSGD combined with the analytic model, it is to be provided as a scientific tool to establish a more reasonable coastal water resource management plan.

기존 해저 지하수 유출의 진단은 국지적으로 많은 양의 해안 유출이 관측되는 곳을 대상으로 수행되었으며, 넓은 영역을 대상으로 해안선을 따라 유출되는 유역 규모의 해저 지하수 유출 진단은 지금까지 국내를 대상으로 연구되어온 적이 없다. 본 연구에서는 제주 동부 지역을 대상으로 해수 침투 진단 및 예측에서 널리 사용되는 해석학적 모형을 기반으로 해저 지하수 유출을 유역별 또는 지역적으로 분석할 수 있는 해저 지하수 유출 진단 모형을 개발하였다. 본 연구에서 연구 방법으로 제안하는 해저 지하수 유출 진단 모형은 이론적으로 개념화된 기존의 해수 침투 경계면 기반 해석식을 발전시켰다. 다수의 관측 지하수위 및 수리 지질학적 자료를 해석식의 입력값으로 활용하기 위해 고안되었으며, 유량 평균 유출 산정식과 단면 평균 유출 산정식으로 구분되는 담해저 지하수 유출량 산정 방법이다. 모형 개발을 위하여 해수 침투의 해석학적 모형의 개념 응용 및 수정, 기존에 보고된 제주 동부의 국지적 해저 지하수 유출 진단 결과를 활용한 보정 및 검증 등을 포함하는 연구를 수행하였다. 연구 결과 성산 유역의 담해저 지하수 유출은 함양량의 약 2.65%에서 9.15%에 이르는 것으로 추정되었다. 본 연구에서는 해석학적 해수침투 모델이 결합된 유역 규모의 해안 유출수의 정량적 평가를 최초로 확립함으로써 보다 합리적인 해안지역 수자원 관리 방안 수립에 대한 과학적 분석 방법 제공이 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220275-001, 신기준수위 기반 해안지역 지하수 관리 솔루션 개발).

References

  1. Chang, S.W., and Clement, T.P. (2013). "Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge" Journal of Contaminant Hydrology, Vol. 147, pp. 14-24. https://doi.org/10.1016/j.jconhyd.2013.02.005
  2. Chang, S.W., Chung, I.M., Kim, M.G., Tolera, M., and Koh, G.W. (2019). "Application of GALDIT in assessing the seawater intrusion vulnerability of Jeju Island, South Korea." Water, Vol. 11, No. 9, 1824.
  3. Chang, S.W., Chung, I.-M., Kim, M.-G., and Yifru, B.A. (2020). "Vulnerability assessment considering impact of future ground-water exploitation on coastal groundwater resources in north-eastern Jeju Island, South Korea." Environmental Earth Sciences, Vol. 79, No. 22, pp. 1-17. https://doi.org/10.1007/s12665-019-8746-6
  4. Chesnaux, R., and Allen, D. (2008). "Groundwater travel times for unconfined island aquifers bounded by freshwater or seawater." Hydrogeology Journal, Vol. 16, pp. 437-445. https://doi.org/10.1007/s10040-007-0241-6
  5. Destouni, G., and Prieto, C. (2003). "On the possibility for generic modeling of submarine groundwater discharge." Biogeochemistry, Vol. 66, No. 1, pp. 171-186. https://doi.org/10.1023/B:BIOG.0000006101.12076.10
  6. Freeze, R.A., and Witherspoon, P.A. (1967). "Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation." Water Resources Research, Vol. 3, No. 2, pp. 623-634. https://doi.org/10.1029/WR003i002p00623
  7. Ghyben, W. B. (1888) Nota in Verband met de voorgenomen putboring Nabij Amsterdam, Tijdschrift van het Kononklijk Instituut van Ingenieurs, The Hague, Netherlands, pp. 8-22.
  8. Hem, J.D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Department of the Interior, US Geological Survey, Washington, D.C., U.S.
  9. Herzberg, A. (1901). "Die Wasserversorgung einiger Nordseebader." Journal fur Gasbeleuchtung und Wasserversorgung, Vol. 44, 815-819, pp. 842-844.
  10. Jeju Province (2013). Water resources management plan in Jeju Province 2013-2022. p. 59.
  11. Johannes, R.E. (1980). "The ecological significance of the submarine discharge of groundwater." Marine Ecology Progress Series, Vol. 3, No. 4, pp. 365-373. https://doi.org/10.3354/meps003365
  12. Kang, K.-m., Kim, D.-j., Kim, Y., Lee, E., Kim, B.-G., Kim, S.H., Ha, K., Koh, D.-C., Cho, Y.-K., and Kim, G. (2019). "Quantitative estimation of submarine groundwater discharge using airborne thermal infrared data acquired at two different tidal heights." Hydrological Processes, Vol. 33, pp. 1089-1100. https://doi.org/10.1002/hyp.13387
  13. Korea Institute of Geosciencs and Mineral Resources (KIGAM) (2015). Assessment of mass exchange in hydrospheric interface through eco-hydrogeological technologies. GP2013-021-2015.
  14. Lee, E., Kang, K.-m., Hyun, S.P., Lee, K.-Y., Yoon, H., Kim, S.H., Kim, Y., Xu, Z., Kim, D.-j., and Koh, D.-C. (2016a). "Submarine groundwater discharge revealed by aerial thermal infrared imagery: A case study on Jeju Island, Korea." Hydrological Processes, Vol. 30, pp. 3494-3506. https://doi.org/10.1002/hyp.10868
  15. Lee, E., Shin, D., Hyun, S., Ko, K.-S., Moon, H., Koh, D.-C., Ha, K., and Kim, B.-Y. (2017). "Periodic change in coastal microbial community structure associated with submarine groundwater discharge and tidal fluctuation: Changes in coastal microbial community." Limnology and Oceanography, Vol. 62, No. 2, pp. 437-451. https://doi.org/10.1002/lno.10433
  16. Lee, E., Yoon, H., Hyun, S.P., Burnett, W.C., Koh, D.-C., Ha, K., Kim, D.-j., Kim, Y., Kang, K.-m. (2016b). "Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone." Limnology and Oceanography: Methods, Vol. 14, pp. 725-735. https://doi.org/10.1002/lom3.10132
  17. Li, L., Barry, D.A., Stagnitti, F., and Parlange, J.Y., (1999). "Submarine groundwater discharge and associated chemical input to a coastal sea." Water Resources Research, Vol. 35, No. 11, pp. 3253-3259. https://doi.org/10.1029/1999WR900189
  18. Ministry of Land, Infrastructure and Transport (MLIT) (2015). Water cycle analysis and establishment of water resources infrastructure in Jeju Island.
  19. Moore, W.S. (1996). "Large groundwater inputs to coastal waters revealed by 226Ra enrichments." Nature, Vol. 380, No. 6575, pp. 612-614. https://doi.org/10.1038/380612a0
  20. Robinson, C., Li, L., and Prommer, H., (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, Vo. 43, No. 7, W07428. https://doi.org/10.1134/s0097807816070095
  21. Smith, A.J. (2004). "Mixed convection and density-dependent sea-water circulation in coastal aquifers." Water Resources Research, Vol. 40, No. 8, W08309.
  22. Taniguchi, M., Burnett, W.C., Cable, J.E., and Turner, J.V. (2002). "Investigation of submarine groundwater discharge." Hydrological Processes, Vol. 16, pp. 2115-2129.
  23. Werner, A.D., and Simmons, C.T. (2009). "Impact of sea-level rise on sea water intrusion in coastal aquifers." Groundwater, Vol. 47, pp. 197-204. https://doi.org/10.1111/j.1745-6584.2008.00535.x
  24. Younger, P.L. (1996). "Submarine groundwater discharge." Nature, Vol. 382, No. 6587, pp.121-122. https://doi.org/10.1038/382121a0