• Title/Summary/Keyword: Large-area plasma

Search Result 189, Processing Time 0.042 seconds

Tribology Coating Study of Thick DLC (ta-C) Film (DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구)

  • Jang, Young-Jun;Kang, Yong-Jin;Kim, Gi Taek;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

A Study on the 0-Dimensional Simulation of He+Ne+Xe Gas and the Discharge Characteristics in Plasma Display Panel (플라즈마 디스플레이 패널용 He+Ne+Xe 혼합가스에서 소량 Xe 함유에 대한 영 차원 수치해석과 방전특성연구)

  • Jeong, Hae-Yeong;Choe, Hun-Yeong;Kim, Geun-Su;Kim, Seong-Ik;Song, Bong-Sik;Park, Heon-Geon;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.436-442
    • /
    • 2002
  • Recently color AC PDP(plasma display panel) technology is rapidly improved. However, the luminous efficiency improvement is a key issue for making plasma display into a large-area flat display. In this paper, we suggest a new concentration of Xe in He-Ne-Xe gas mixture in order to achieve a high luminous efficiency of color AC PDPs. We calculated the densities of 25 species as a function of the time zero dimensional simulation using CVODE solver and we compared the results of zero dimensional simulation with a measurement of photo wave brightness and luminous efficiency, in order to find the optimum mixing condition of He-Ne-Xe gas in color plasma display panel. We obtained a high discharge speed under Xe mixing ratio of 1% by simulation and confirmed that through measuring photo wave.

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Growth of vertically aligned carbon nanotubes on a large area Si substrates by thermal chemical vapor deposition

  • Lee, Cheol-Jin;Park, Jung-Hoon;Son, Kwon-Hee;Kim, Dae-Woon;Lyu, Seung-Chul;Park, Sung-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.212-212
    • /
    • 2000
  • Since the first obserbvation of carbon nanotubes, extensive researches have been done for the synthesis using arc discharge, laser vaporization, and plasma-enhanced chemical vapor deposition. Carbon nanotubes have unique physical and chemical properties and can allow nanoscale devices. Vertically aligned carbon nanotubes with high quality on a large area is particularly important to enable both fundamental studies and applications, such as flat panel displays and vacuum microelectronics. we have grown vertically aligned carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition using C2H2 gas at 750-950$^{\circ}C$. we deposited catalytic metal on Si susbstrate using thermal evaporation. The nanotubes reveal highly purified surface. The carbon nanotubes have multi-wall structure with a hollow inside and it reveals bamboo structure agreed with base growth model. Figure 1 shows SEM micrograph showing vertically aligned carbon nanotubes whih were grown at 950$^{\circ}C$ on a large area (20mm${\times}$30mm) of Si substrates. Figure 2 shows TEM analysis was performed on the carbon nanotubes grown at 950$^{\circ}C$ for 10 min. The carbon nanotubes are multi-wall structure with bamboo shape and the lack of fringes inside the nanotube indicates that the core of the structure is hollow. In our experiment, carbon nanotubes grown by the thermal CVD indicate base growth model.

  • PDF

High-Quality Graphene Films Synthesized by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Park, Nam-Kuy;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Graphene has recently attracted significant attention because of its unique optical and electrical properties. For practical device applications, special attention has to be paid to the synthesis of high-quality graphene on large-area substrates. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on Ni or Cu substrates. Among these techniques, CVD is superior to the others from the perspective of technological applications because of its possibility to produce a large size graphene. PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures, such as carbon nanotubes and nanosheets. Compared with thermal CVD, PECVD possesses a unique advantage of additional high-density reactive gas atoms and radicals, facilitating low-temperature, rapid, and controllable synthesis. In the current study, we report results in synthesizing of high-quality graphene films on a Ni films at low temperature. Controllable synthesis of quality graphene on Cu foil through inductively-coupled plasma CVD (ICPCVD), in which the surface chemistry is significantly different from that of conventional thermal CVD, was also discussed.

  • PDF

AN ELECTRON MICROSCOPIC STUDY OF THE PERIAPICAL GRANULOMA AND THE PERIAPICAL CYST (치근단육아종(齒根端肉芽腫)과 치근단양종(齒根端襄腫)의 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Yo, In-Ho;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.283-294
    • /
    • 1988
  • The purpose of this study was to investigate the characteristic features of the cells and tissues of the chronic periapical lesions using light microscope and electron microscope. Fifteen dental periapical lesions were obtained from the patients undergoing periapical surgery. Each specimen was divided into two parts along the tooth axis. One part was routinely processed for histopathologic examinations. 12 periapical lesions were diagnosed as granuloma and 3 periapical specimens as periapical cyst. The other part was fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer at pH 7.4 and 1% osmic acid in same buffer. They were embedded in Epon 812. The semithin sections were used for the orientation of the lesions and the ultrathin sections were stained conventionally and examined with AEI Corynth 500 electron microscope. The results were as follows. 1. PMN and macrophages, which were dominant cell type, were scattered in small or large numbers throughout the central destructive area of granuloma. In the granulomatous area, plasma cells and lymphoytes were found in significant number and a lot of new capillary formation were revealed. Clefts caused by cholesterol were often seen in the connective tissue. Occasionally foam cells became collected in groups and epithelial proliferation were present. 2. In both granuloma and cyst, some plasma cells contained narrow cisternae of granular endoplasmic reticulum of which was tightly packed with electron dense materials, and other cells exhibited dilated profiles of granular endoplasmic reticulum. 3. In the area where plasma cells and lymphocytes were collected in groups, lymphocytes with well developed nucleolus and profuse cytoplasm were found and differentiating plasma cells were also present. 4. In the epithelial strands of the granulomatous area, epithelial cells contained enlarged endoplasmic reticulum, tonofilaments and ribosoms. Toward the intercellular space epithelial cells protruded a few microvilli. In the intercellular space, exudate-like electron dense materials, most of which was attached to the plasma membrane, appeared. 5. Some foam cells filled with numerous lipid droplets and others had lipid droplets and crystal-like structures. 6. Cyst epithelium consisted of bright cells and dark cells. The former had bright cytoplasm and small amounts of ribosoms, and the latter dark cytoplasm, many ribosoms, mitochondria and elongated microvilli. 7. Epithelial cells near the cyst lumen protruded a lot of long microvilli toward intercellular space and cyst lumen.

  • PDF

The Optimization of AC-PDP Cell by 2D Simulations

  • Kim, Woong;Y.K. Shin;C.H. Shon;J.H. Kang;Park, J.S.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.227-227
    • /
    • 1999
  • Plasma display panel(PDP) is a leading technology for large-area flat panel displays. A current issue in operating the PDP cell is that the efficiency of the PDP cell is very low. To increase the efficiency of the PDP cell, the visible light needs to be maximized and the power consumption minimized. Since the excited xenons are related to the production of the visible light, it is important to optimize the cell geometry and the gas composition that produce the excited xenons more efficiently. A 2D-fluid code (FL2P) is developed and used to simulate the plasma dynamics and the radiation transport in the PDP cell. The cell is optimized with the code for various operating conditions and cell dimensions such as the voltage pulse, electrode length, electrode spacing, gap size, dielectric constant, gas mixture ratio, pressure, and pulse duration.

  • PDF