• 제목/요약/키워드: Large-amplitude ship motion

검색결과 19건 처리시간 0.02초

비선형 선박운동을 고려한 대파고 파랑 중 조종성능에 대한 연구 (Effects on Nonlinear Ship Motions on Ship Maneuvering in Large Amplitude Waves)

  • 서민국;김용환;김경환
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.516-527
    • /
    • 2011
  • This paper considers a numerical analysis of ship maneuvering performance in the high amplitude incident waves by adopting linear and nonlinear ship motion analysis. A time-domain ship motion program is developed to solve the wave-body interaction problem with the ship slip speed and rotation, and it is coupled with a modular type 4-DOF maneuvering problem. Nonlinear Froude-Krylov and restoring forces are included to consider weakly nonlinear ship motion. The developed method is applied to observe the nonlinear ship motion and planar trajectories in maneuvering test in the presence of incident waves. The comparisons are made for S-175 containership with existing experimental data. The nonlinear computation results show a fair agreement of overall tendency in maneuvering performance. In addition, maneuvering performances with respect to wave slope is predicted and reasonable results are observed.

파중 진행하는 선박의 3차원 시간영역 운동해석 (3_D Time-Domain Analysis on the Motion of a Ship Advancing in Waves)

  • 홍도천;하태범;김대헌;송강현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.164-168
    • /
    • 2001
  • The motion of a ship advancing in regular waves is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation. The ship motions in regular waves have been calculated by both the time and frequency domain methods. It has been shown that they agree very well with each other. The present time-domain method can be used to predict the time histories of unsteady motions in irregular waves. It can also be used to calculate the hydrostatic and Froude-Krylov forces over the instantaneous wetted surface of the ship hull to predict large ship motions, in a practical sense, advancing in large amplitude waves.

  • PDF

직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석 (Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method)

  • 양경규;남보우;이재훈;김용환
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산 (Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM)

  • 홍도천;홍사영;성홍근
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

수동형 감요수조 설계를 위한 벤치테스터 개발 (Development of Bench Tester for Designing the Passive Anti-Rolling Tanks)

  • 류재문;김효철
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석 (Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme)

  • 김유철;김윤식;김진;김광수
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.

Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

  • Liu, Shukui;Papanikolaou, Apostolos D.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.72-79
    • /
    • 2011
  • Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

대파고 파랑중에서의 선체장도 해석에 관한 연주 - 선종에 따른 강도, 응답특성비교 - (A Strength Analysis of the Hull Gilder among the Rough Sea according to Ship Types)

  • 김사수;신구균;손성완;김재홍
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.153-168
    • /
    • 1993
  • 파랑중을 항해하는 선박의 선체강도에 있어 선체에 작용하는 파랑하중을 정확히 추정하는 것은 매우 중요하다. 파랑하중 추정에 있어서 현재 널리 쓰이고 있는 선형스트립 이론은 배의 운동이 작은 낮은 파고에 의한 선체의 강체운동 응답에 기인한 파랑하중 계산법이다. 그러나, 대파고 파랑중에서 특히 슬래밍이 발생하게 되면 선체는 탄성체로서의 응답특성을 가지게 된다. 따라서 이런 경우 선체운동뿐만 아니라 탄성체 운동을 고려한 파랑하중 선체강도 해석법이 요구된다. 이미 본 연구자들은 이러한 배경으로 비선형 유체력이 선체에 작용할 때 선체변위로부터 파랑하중을 계산하여 선체강도를 평가하는 방법을 제안한 바 있다. 본 논문에서는 이러한 동적강도 해석법을 세가지 선종에 적용시켜 계통적인 수치계산을 수행하여 강체응답 및 파랑하중 특성을 비교, 고찰함으로써 파랑중 선체동적강도법의 기초자료를 제시하고자 한다.

  • PDF