• Title/Summary/Keyword: Large-Scale Production

Search Result 848, Processing Time 0.03 seconds

Evolutionary Operation of Mixture Components Using Regular Simplex (정규 심플렉스를 이용한 혼합물 성분변수의 진화적 조업법)

  • Kim, Chi-Hwan;Byun, Jai-Hyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.92-95
    • /
    • 2004
  • A mixture experiment is a special type of response surface experiment in which the factors are the ingredients or components of a mixture, and the response is a function of the proportions of each ingredient. Evolutionary operation is useful to improve on-line full-scale manufacturing processes by systematically changing the levels of the process variables without jeopardizing the product. This paper presents an evolutionary operation procedure for large-scale mixture production processes based on simplex search procedure, which can be beneficial to practitioners who should improve on-line mixture process quality while meeting the production schedule of the mixture product.

  • PDF

Toward Industrial Applications of Graphene Electrodes

  • Hong, Byeong-Hui
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.2-3.2
    • /
    • 2010
  • There have been many efforts to utilize the outstanding properties of graphene for macroscopic applications such as transparent conducting films useful for flexible/stretchable electronics. However, the lack of efficient synthesis, transfer, and doping methods limited the scale and the quality needed for the practical production of graphene films. In this presentation, we introduce ultra-large scale (~30 inch) synthesis, roll-to-roll transfer, and chemical doping of graphene films showing excellent electrical and physical properties suitable for practical applications. Considering the outstanding scalability/processibility of roll-to-roll and CVD methods and the extraordinary flexibility/conductivity of graphene films, we expect the commercial production and application electrodes replacing the use of ITO can be realized in near future.

  • PDF

Selection of High Yielding Mutant Strains for the Antifungal Antibiotics KRF-001 (항진균물질 KRF-001의 고생산성 변이주 분리)

  • 이항우;김무경
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.378-384
    • /
    • 1994
  • An improved method for the selective isolation of high-yielding mutant strains for the production of antifungal antibiotic KRF-001 was investigated. The mutant strain U. V 4, which produces high titer of KRF-001, was selected on the high potency agar plate after ultraviolet light irradiation. The U. V 4 strain produced 2-fold more KRF-001 than the mother strain in production media. Large scale fermentation was performed using the U. V 4 strain in 100$\ell$ fermenter. The antifungal antibiotic KRF-001 secreted into culture broth was detected by HPLC in 24hrs of fermentation.

  • PDF

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

The Design of Third Order Process for B2B (대형할인매장을 위한 B2B 매출정보지원 프로세스 설계)

  • Chang Jin-Ick;Kim Won Joong
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.163-170
    • /
    • 2002
  • In the form of B2C transaction, making an on-line order by using the website increases rapidly. An off-line order at the whole sale outlets is geometrically increasing. However, it is so true that both types of market are showing a tendency to become computerization. As to apply this type of computerized B2B transaction to this kind of large scale wholesale outlets, the most important fact to be considered is that there must have no data error. In addition to this, an accurate counting of actual stock is a precondition to decide a suitable amount of production and a timely delivery of goods. In this study, reducing elements of the risk that may create a difference In between actual stock and that in the computer, the integrated B2B ordering system is designed by taking actual cases an example in order to manage the information for a sale, which is conducted by various system in the large scale wholesale outlets such as E-mart, Carefour or the same kinds.

  • PDF

Effect of Land Consolidation on Agricultural Mechanization (경지정리 사업이 농업기계화에 미치는 영향)

  • 고학균;조성인;이중용;이정엽
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.493-500
    • /
    • 1999
  • In 1990's, two types of land consolidation has been widely carried out to enforce competativeness of rice production in Korea. One is so called large-scale land consolidation for resizing paddy field and farm road, the other is general land consolidation for changing both size and shape of field, water channel and farm road. This study was conducted to evaluate how much effect on fm mechanization the land consolidation had. To evaluate the influence of the land consolidation, theoretical analysis and surveys were accomplished. Land consolidation was analyzed to increase field efficiency by 180 to 670% depending on the type of land consolidation and machine selection. Also, land consolidation brought increment of real working time ratio by reducing traveling time on farm road. Trends of large scale mechanization and increment of custom work were observed to be accelerated by land consolidation. It also gave effect on the pattern of machine troubles. Farmers were conscious of the influence of land consolidation on machine utilization, however, in plains level of satisfaction was shown to be low.

  • PDF

An Efficient Method for the Large-Scale Synthesis of Atorvastatin Calcium

  • Lee, Hong-Woo;Kim, Young-Min;Yoo, Choong-Leol;Kang, Sung-Kwon;Ahn, Soon-Kil
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Atorvastatin calcium salt (1) was obtained through the preparation of lactone compound (8) from 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-(phenylcarbamoyl)-1H-pyrrol-1-yl)-ethyl)-2-phenyl-1,3,2-dioxaborinan-4-yl)acetic acid tert-butyl ester (9) by hydrolysis in basic condition. Efficient hydrolysis of boronate compound 9 aimed at the viable synthesis for commercial production and purification of Atorvastatin calcium is reported. Detail studies of evaluation procedure are also reported.

Effective Production of N-Acetyl-$\beta$-glucosamine by Serratia marcescens Using Chitinadceous Waste

  • Kim, Kwang;A. Louise Creagh;Charles A. Haynes
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.71-77
    • /
    • 1998
  • The strain of Serratia marcescens QM B1466 produces selectively large amount of chitinolytic enzymes (about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acetyl-${\beta}$-D-glucosamine (NAG) was performed with a system consisting of two hydrolases (chitinase and chitobiase) produced by optimization of a microbial host consuming chitin particles. For the development of Large-scale biological process for the production of NAG from chitinaceous waste, the selection and optimization of a microbial host, particle size of crab/shrimp chitin sources and initial induction time using chitin as a sole carbon source on chitinase/chitobiase production and NAG production were examined. Crab-shell chitin(1.5%) treated by dilute acid and , ball-milled with a normal diameter less than 250m gave the highest chitinase activity over a 7 days culture. Crude chitinase/ chitobiase solution obtained in a 10 L fed-batch fermentation showed a maximum activities of 23.6 U/mL and 5.1 U/mL, respectively with a feeding time of 3 hrs, near pH 8.5 at 30$^{\circ}C$.

  • PDF