• Title/Summary/Keyword: Large surface texture

Search Result 63, Processing Time 0.026 seconds

The evaluation of fabric on the Internet -The difference of cotton fabric texture perceived between on-line and off-line- (인터넷에서의 소재 평가에 대한 연구 -실물과 영상에서의 면직물 유사성 평가-)

  • 신혜원;이정순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.396-402
    • /
    • 2004
  • The purpose of this study was to investigate the difference of cotton fabric texture perceived between on-line(screening fabric) and off-line(real fabric), and to analyze fabric characteristics having an effect on the difference. The similarity of 55 various cotton fabrics perceived between on-line and on-line were measured showing simultaneously real fabrics and screening fabrics by 7-scale questionnaire. And the characteristics of cotton fabrics such as weave structure, thickness, weight, fabric density, stiffness, Hunter's L, a, b, and hue were measured. Cotton fabrics were classified into 3 groups by extent of similarity. There were no significant differences in weft density, stiffness, Hunter's L, a, b, and hue among 3 groups. But there were significant differences in weave structure, thickness, weight, warp density, and difference of warp & weft density. The fabrics having large similarity were thick and heavy, had small warp density and difference of warp & weft density, and distinct surface texture. The group having medium similarity included fabrics of medium thickness and weight, having weak surface texture, large warp density and difference of warp & weft density. The group having small similarity, which the differences between on-line and off-line were large, included thin and light fabrics having smooth surface and large warp density and difference of warp & weft density.

Development and Evaluation of Stitching Algorithm With five Degrees of Freedom for Three-dimensional High-precision Texture of Large Surface (대면적/고정밀 3차원 표면형상의 5자유도 정합법 개발 및 평가)

  • Lee, Dong-Hyeok;Ahn, Jung-Hwa;Cho, Nham Gyoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • In this paper, a new method is proposed for the five-degree-of-freedom precision alignment and stitching of three-dimensional surface-profile data sets. The control parameters for correcting thealignment error are calculated from the surface profile data for overlapped areas among the adjacent measuring areas by using the "least squares method" and "maximum lag position of cross correlation function." To ensure the alignment and stitching reliability, the relationships betweenthe alignment uncertainty, overlapped area, and signal-to-noise level of the measured profile data are investigated. Based on the results of this uncertainty analysis, an appropriate size is proposed for the overlapped area according to the specimen's surface texture and noise level.

Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet (알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구)

  • 김현철;김용희;허무영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

Dynamic Characteristics of Droplet Impinging on Multi-layer Texture Surfaces (이중으로 텍스쳐 된 표면에 충돌하는 액적의 동적 특성)

  • Moon, Joo Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This study presents the dynamic characteristics of an impinging droplet on hydrophobic and hydrophilic surfaces with various texture area fractions. The flat surface was fabricated by using the drilling technique to make micro-meter hole-patterned surfaces, which shows hydrophobic textured surfaces. Moreover, the hydrophilic textured surfaces were manufactured by anodizing technique on the micro-meter hole-patterned surfaces to generate multi-layer surfaces. Impinging droplet experiments were conducted for various hole-patterned surfaces, with changing impact velocity and texture area fractions. It is observed that an anodizing technique increases wettability by decrease in hole diameter on the textured surfaces. However, micro-drilled surfaces decreases wettability because the hole diameter was so large that air can be trapped under the holes. In addition, the maximum spreading diameter decreases with the texture area fraction for the micro-drilled surfaces because of decrease in wettability.

Study on crystal texture of PIT processed Bi-2223 multi-filamentary tape (PIT 공정으로 제조한 Bi-2223 다심 고온 초전도 선재의 결정 배향성에 관한 연구)

  • Choi, J.K.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Yun, J.K.;Lee, N.J.;Ha, D.W.;Kwan, Y.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-63
    • /
    • 2002
  • The purpose of this paper is to investigate the crystal texture of the 2223 phase and its relationship with PIT processing parameter. Ag-sheathed Bi-2223 multi-filament tapes were prepared by changing rolling reduction ratio. We analysed the degree of texture for 2223 phase after heat-treatment. According to X-ray pole-figure, the texture of the filaments located near surface and center were not so different each other for all rolling conditions. we found a little higher degree of texture for 60% rolling reduction. But its difference is not so high compared with those tapes with a lower rolling reduction ratio. Reaction induced texturing seemed to contribute with a large portion under present condition.

  • PDF

MORPHOLOGICAL CHARACTERISTICS OF NONLINEAR OPTICAL MOLECULES AT THE AIR/WATER INTERFACE

  • Lim, Sung-Taek;Park, Mi-Kyung;Shin, Dong-Myung;Kwon, Ohoak
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1998
  • The texture change of non-linear optical molecules at the air/water interface was investigated as a function of surface pressure with Brewster angle microscopy. The texture change resulted from the aggregation of dye molecules is important to understand the film uniformity and grain formation process. The 4-Octadecylhydroxy-4'-nitrostilbene (OHNS) generated the small spots of size around 1$\mu$m. The spots exhibit high contrast with other film area and do not show angle dependent reflectivity change. It is interesting to observe that the size of the domain stays the same as the film pressure increases. At high surface pressure, the contrast ratio of domains becomes high, which means dense packing of OHNS. And, the size of domain grows. In the middle of domain, highly contrasted domains are formed. The first and the second order transitions of OHNS observed from surface pressure-area isotherm result from the two types of grains. The N,N-Dihexadecylcyanoaniline (DHCA) formed highly contrasted gains over entire region, and the grains are the double layers. The difference in Langmuir film of OHNS and DHCA at the air/water interface is consistent with the small tilt angle from the surface normal for OHNS and the large tilt angle for DHCA in the Langmuir-Blodgett films.

  • PDF

Quality Characteristics of Bread Using Sour Dough

  • Park, Young-Hee;Jung, Lan-Hee;Jeon, Eun-Raye
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • In this study, we examined the changes in loaf weight, loaf volume and specific volume, moisture content and water absorption, pH and titrable acidity, shape, texture profile and sensory evaluation using sour dough instead of dough conditioner in bread making. The weight and volume of bread tended to increase in the sour dough bread, compared to the control. The pH of bread tended to be lower in the sour dough bread. The control bread had large irregular pores that were fewer in number, while the sour dough bread had small spots and was very dense and even throughout the whole surface. The texture profile of bread such as hardness, cohesiveness, chewiness and brittleness was lower in the sour dough bread. There were no significant differences in the sensory characteristics of the breads, except for the shape of bread. However, the sour dough A bread was better in color, texture, flavor, touch, moistness, taste and overall acceptability, and the sour dough B bread was better in flavor, touch and taste than the control.

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.