• Title/Summary/Keyword: Large structures

Search Result 4,632, Processing Time 0.028 seconds

Development of an Integrated System for Cooperative Design - Application for Very Large Floating Structures (협업기반 설계 통합 시스템 개발 - 초대형 해상구조물에의 획용)

  • Park, Seong-Whan;Lee, Jai-Kyung;Cho, Gui-Mok;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.412-420
    • /
    • 2008
  • In order to design the large complex structures like VLFS (Very Large Floating Structures), it is essential the cooperation between the experts in various fields; structural engineering expert, fluid mechanics expert, mooring system engineer, and so on. This paper describes the development of an integrated system to support the cooperative design between various experts and project manager. This integrated system is designed to be operated in Web environment and it contains the support of design DB and 3D graphical tool, negotiation tool for task allocation, and various engineering supporting tools for each design step. The user group of this system can be classified as Project Manager, Engineering Expert, DB Builder, and System Administrator. All of the engineering data is saved after and during the process of the design projects and all participants can be connected by Internet without the limit of time or space constraints.

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

OPTIMAL VIBRATION CONTROL OF LARGE STRUCTURES (대형 구조물의 최적 진동제어)

  • 윤정방;김상범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.156-161
    • /
    • 1992
  • Over the past twenty years, the concept of structural control has been investigated for the application to large civil engineering structures. At the early years, passive control systems, such as tuned mass damper(TMD) and tuned liquid mass bamper(TLD), have been utilized to reduce the wind induced vibrations of tall buildings, decks and pylons of long-span bridges. More recently, the active control concept has been applied to reducing the structural vibration and increasing the human comfortness in tall buildings during strong wind. In this study, the effectiveness of the active tuned mass damper(ATMD) has been investigated for reducing vibration of large structures during strong earthquake. Stochastic optimal control theory has been employed. Example analyses are carried out through analytical simulation studies.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Structural analysis based on multiresolution blind system identification algorithm

  • Too, Gee-Pinn James;Wang, Chih-Chung Kenny;Chao, Rumin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.819-828
    • /
    • 2004
  • A new process for estimating the natural frequency and the corresponding damping ratio in large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely because they are too complex to model using the finite element method and too heavy to excite using the exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In order to identify the structural impulse response associated with the information of natural frequency and the corresponding damping ratio in large structures, the analysis process, a so-called "multiresolution blind system identification algorithm" which combines Mallat algorithm and the bicepstrum method. High time-frequency concentration is attained and the phase information is kept. The experimental result has demonstrated that the new analysis process exploiting the natural frequency and the corresponding damping ratio of structural response are useful tools in structural analysis application.

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Testing Web Feeding Model for Star Formation in Galaxy Clusters in the COSMOS Field

  • Ko, Eunhee;Im, Myungshin;Lee, Seong-Kook;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.3-53
    • /
    • 2021
  • It is yet to be understood what controls the star formation activity in high-redshift galaxy clusters. One recently proposed mechanism is that the star formation activity in galaxy clusters are fed by gas and galaxies in large-scale structures surrounding them, which we call as "web feeding model". Using galaxies in the COSMOS2015 catalog, with mass completeness at log(M/M⦿)≥9.54 and reliable photometric redshift data (σΔz/(1+z) ≲ 0.01), we study the star formation activities of galaxy clusters and their surrounding environment to test the web feeding model. We first identify the overdense regions with number density exceeding the 4σ-level from photometric redshift data as galaxy clusters, and we find that they are well matched with clusters identified in the X-ray extended source catalog. Furthermore, we identify galaxy large scale structures, and will present the correlation or anti-correlation between quiescent galaxy fraction, an indicator of star-forming activity, and the prevalence of galaxy large scale structures.

  • PDF

Measurement Examination of Indoor Thermal Environment Characteristic in accordance with Heat Loads from Occupant for Large Enclosure in Winter (인체부하를 고려한 대규모 실내경기장의 동계 온열환경 특성 실측조사)

  • Seok, Ho-Tae;Chae, Mun-Byoung;Choi, Dong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.97-107
    • /
    • 2007
  • The purpose of this study is to grasp the characteristic of indoor thermal environment from large enclosures in connection with heating condition and outdoor environment. This study has measured indoor thermal environment in accordance with heat loads from occupant for large enclosures in winter. We examined indoor thermal environment of the large enclosures in this study which include temperature distribution vertical, horizontal, seat and surface and thermal comfort environment.

  • PDF

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

Large eddy simulation of turbulent flows in a grooved channel (홈이 파진 평판 사이 난류유동의 대와동모사 (LES))

  • Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.34-49
    • /
    • 1998
  • In this study, turbulent flows in a grooved channel are numerically investigated by Large Eddy Simulation (LES). Especially, a parametric study is carried out to study effects of length and depth of a groove on large-scale flow structures. For one test case, comparison of LES results with those of DNS reveals a good agreement even though the number of grid points of LES is only 6.5% of that of DNS. This confirms that LES is a suitable tool for a parametric study of turbulent flows. The subsequent parametric study using LES shows that the large-scale turbulent structures are significantly affected by the geometry of the groove. Especially, when the length of the groove is short such that the recirculation region occupies the entire groove, the turbulent flow in the groove becomes very weak in both mean and fluctuation quantities.