• 제목/요약/키워드: Large strain

검색결과 1,579건 처리시간 0.026초

얇은 보 구조물의 횡좌굴에 대한 total lagrangian 유한요소해석 (Total Lagrangian Finite Element Analysis of Lateral Buckling for Thin Beam Structures)

  • 정동원
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.7-22
    • /
    • 1997
  • A finite element analysis is performed for lateral buckling problems on the basis of a geometrically nonlinear formulation for a beam with small elastic strain but with possibly large rotations. The total Lagrangian formulation for a general large deformation, which involves finite rotations, is chosen and the exponential map is used to treat finite rotations from the Eulerian point of view. For lateral buckling, the point of vanishing determinant of the resulting unsymmetric tangent stiffness is traced to examine its relationship to bifurcation points. It is found that the points of vanishing determinant is not corresponding to bifurcation points for large deformations in general, which suggests that the present unsymmetric tangent stiffness is not an exact first derivative of internal forces with respect to displacement. This is illustrated through several numerical examples and followed by appropriate discussion.

  • PDF

정적 대변형에 중첩된 미소 동적 하중을 견디는 고무재료의 점탄성 구성방정식에 관한 연구 (A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation)

  • 김봉규;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.280-285
    • /
    • 2000
  • A viscoelastic constitutive equation of rubber that is under small oscillatory load superimposed on large static deformation is proposed. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and reference configuration transformation. The proposed constitutive equation is extended to a generalized viscoelastic constitutive equation that includes widely used Mormin's model as a special case using objective stress increment. Static deformation correction factor is introduced to consider the influence of Pre-strain on the relaxation function. The proposed constitutive model is tested fer dynamic behavior of rubber specimens with different carbon black contents. It is concluded from the test that the viscoelastic constitutive equation for filled rubber must include the influence of the static deformation on the time effects. The suggested constitutive equation with static deformation correction factor shows good agreement with test values.

  • PDF

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1995년도 제4회 학술강연회논문집
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF

Geocomat를 활용한 폐기물매립장의 사면안정성 검토

  • 신은철;이성근;이영재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 토목섬유기술위원회 학술세미나 논문집
    • /
    • pp.45-54
    • /
    • 2001
  • In this study, slope stability analysis of LCRS(Leachate Collection Removel System) in waste landfill was peformed by large scale field test. Geocomat is new type of geocomposite product. Gecomat is a sort of Geocomposite product. It is composed of nonwoven geotextiles, woven geotextile, and geonet. Large scale field tests were performed on the slope of different two LCRSsections with static loading condition. One is LCRS section witch consist of GCL, HDPE and Geocomat, another is GCL, HDPE, and woven type geocomposite. The behavior of geosynthetics lined slope was monitored by incorporating instrumentation including vertical soil pressure meter, settlement plate, strain gauges, potential meter, displacement pin.. Based on the field monitoring, the Geocomat LCRS section is less sliding than the conventional geocomposite LCRS section.

  • PDF

큰회전 변형 및 조작의 실시간 시뮬레이션 (Real-Time Simulation of Large Rotational Deformation and Manipulation)

  • 최민규;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권1호
    • /
    • pp.15-21
    • /
    • 2004
  • This paper proposes a real-time technique for simulating large rotational deformations. Modal analysis based on a linear strain tensor has been shown to be suitable for real-time simulation, but is accurate only for moderately small deformations. In the present work, we identify the rotational component of an infinitesimal deformation, and extend linear modal analysis to track that component. We then develop a procedure to integrate the small rotations occurring al the nodal points. An interesting feature of our formulation is that it can implement both position and orientation constraints in a straightforward manner. These constraints can be used to interactively manipulate the shape of a deformable solid by dragging/twisting a set of nodes, Experiments show that the proposed technique runs in real-time even for a complex model, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

구조합성법을 이용한 큰 구조물에서의 구조동특성변경법 (Structural Dynamics Modification for a Large Structure using Component Mode Synthesis Methods)

  • 이문석;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.852-855
    • /
    • 2005
  • Structural Dynamic Modification(SDM) is a technique to improve structure's dynamic characteristics by adding and removing substructures or changing material properties and shape of structures. This paper describes SDM techniques applied to a large structure with too many DOFs. The goal of this SDM technique is to modify a targe structure efficiently for its natural frequencies to avoid excitation frequencies. In this case, models reduced by Component Mode Synthesis(CMS) method that is a coupling technique are used to analyze a large structure efficiently. This paper considers a helicopter deck model with 55,000 DOFs as an application.

  • PDF

A harmonic movable tooth drive system integrated with shape memory alloys

  • Xu, Lizhong;Cai, Zongxing;He, Xiaodong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.319-327
    • /
    • 2019
  • Continuous rotating SMA actuators require motion conversion mechanisms, so their structure is relatively complex and difficult to realize the miniaturization. Here, a new type of continuous rotating actuator driven by SMA is proposed. It combines the movable tooth drive with SMA drive. The structure and working principle of the integrated movable tooth drive system is introduced. The equations of temperature, stress and strain of memory alloy wires, and the output torque of drive system are given. Using these equations, the temperature, the output forces of the SMA wires, and output torque of the drive system are studied. Results show that the compact drive system could give large output torque. To obtain large output torque plus small fluctuation, large eccentricity and small diameter of the SMA wire should be taken. Combined application of ventilation cooling and high current can increase the rotary speed of the drive system.

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

EVALUATION OF SHEAR BEHAVIOR OF LARGE GRANULAR MATERIALS WITH DIFFERENT PARTICLE SIZES BY TRIAXIAL TEST AND NUMERICAL SIMULATION

  • Kim, Bum-Joo;Sagong, Myung
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.55-60
    • /
    • 2010
  • Rockfill zones in CFRD consist typically of large granular materials, usually the maximum particle size up to several meters, which makes laboratory testing to determine the mechanical properties of rockfill difficult. Commonly, the design strength of the rockfills is obtained by scaling down the original rockfill materials and performing laboratory strength tests for the reduced size materials. The objective of the present study is to investigate the effect of particle size on the shear behavior and the strength for granular materials. A series of large-scale triaxial tests was conducted on large granular materials with the maximum particle size varying from 20 to 50mm. The test results showed that overall shear behaviors were similar between the samples with different particle sizes while there were slight differences in the magnitudes of the peak shear stress between the samples. In addition, a simulation of the granular material with the max. particle size of 20mm was performed using DEM code, $PFC^{2D}$, and compared with the test results. The deviatoric stress versus strain behaviors of experimental and numerical tests were found to be matched well up to the peak stress state.

  • PDF