• Title/Summary/Keyword: Large strain

Search Result 1,570, Processing Time 0.032 seconds

An elasto-plastic solution for infinite solid containing a spherical precipitate under hydrostatic pressure (구형석출물을 갖는 무한 고체에 전수압이 가해지는 경우에 대한 탄소성해)

  • ;;Earmme, Youn Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.122-130
    • /
    • 1981
  • Equation of equilibrium is derived and solved for an infinite isotropic solid under applied hydrostatic stress which is uniform at large distance, and disturbed by a spherical precipitate which has isotropoc elastic constants dirrerent form those of the matrix. A linear strain hardening behavior of the matrix is assumed, and an elasto-plastic sloution is obtained. The difference of the total strain energy stored inthe infinite solid with and without a precipitate is computed, and compared with that for purely elastic case. Finally the effect of the ratio of the bulk modulus of the precipitate to that of the matrix and the effct of linear strain hardening rate on the plastic zone size and the energy difference are discussed.

Localized necking condition of sheet metals is subjected to out-of plane force (면외압을 받는 판재의 국부네킹 발생 조건)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.579-584
    • /
    • 2002
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it cm be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

Screening of Bacteriocinogenic Lactic Acid Bacteria and Their Antagonistic Effects in Sausage Fermentation

  • Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.461-467
    • /
    • 1996
  • Four strains of lactic acid bacteria (LAB), that lower the pH of sausage $\leq$ 4.2 within 24 h of incubation at $37^{\circ}C$, were screened from 57 bacteriocin producing LAB which were isolated from kajamie shikhae and natural fermented sausages. The proteinaceous nature of the bacteriocin was confirmed by losing antimicrobial activity after pronase treatment. Inhibitory activity against pathogens, times of bacteriocin production and sensory tests were compared between 4 isolates and 3 commercial starters. Especially, strain NFS #8-1, screened from natural fermented sausage and identified as Pediococcus acidilactici, antagonized a large number of foodborne pathogens including Listeria monocytogenes, Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Salmonella typhimurium and Staphylococcus aureus. Production of bacteriocin by strain NFS #8-1 was early in the growth phase (mid log phase) and its sensory acceptance was high. The feasibility of using strain NFS #8-1 as a starter for the production of microbiologically safe fermented sausage is envisaged.

  • PDF

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

The effect of environmental factors affecting to the growth of Rhizobium japonicum (Rhizobium japonicum의 생장 및 poly$\beta$hydroxybutyric acid(PHB)의 축적에 미치는 환경요인의 영향)

  • 이기성;최영길
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 1982
  • Rhizobium japonicum was isolated from the nodule of soybean root grown at the reclaimed tidal land in Kang-Wha island. The effect of pH and salt concentration to the viability of the isolated strain were examined in relationship between microbial growth and accumulation of PHB. Optimal pH value for the good viability of the isolated strain was 7.0 and also, at 5.0 and 6.0 viability was favorable to large extent, but 9.0 was unfavorable. Examined the effect of salt concentration treated two times as of the salinity in the reclaimed tidal land, viability of the isolated strain showed about 30 to 40%. And also in treatment with NaCl(40g/l) whatever the pH value adopted, viability was mostly less than 10%. The amount of accumulated PHB was relatively high at low pH value(5-6) and at high salt concentrration, respectively.

  • PDF

Separation of ε-poly-L-lysine from the fermentation broth of Streptomyces albulus (Streptomyces albulus 배양액으로부터 ε-poly-L-lysine의 분리)

  • Sun, Heung-Suk;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Grown in the secondary broth of production media, the strain Streptomyces albulus has increased more the production of its metabolite ${\varepsilon}$-poly-L-lysine, one of poly(amino acid)s used as disinfecting food additives, than the strain in the primary culture of growth nutrients. Having the strain removed, the large concentrate obtained by ultrafiltrating the secondary culture broth. The concentrated production broth exchanged into followed by detecting in UV flowcell at 220nm the peptide bond of the components eluting the adsorbed proteins and polylysine with NaCl salt of gradient concentration, and has separated into five components. Among them the component in the fourth peak fraction has proved to be the pure ${\varepsilon}$-poly-L-lysine after the portion being hydrolyzed the fraction with HCl into amino acid followed by being the composing amino acid analysis.

  • PDF

Slenderness effects on the simulated response of longitudinal reinforcement in monotonic compression

  • Gil-Martin, Luisa Maria;Hernandez-Montes, Enrique;Aschheim, Mark;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.369-386
    • /
    • 2006
  • The influence of reinforcement buckling on the flexural response of reinforced concrete members is studied. The stress-strain response of compression reinforcement is determined computationally using a large-strain finite element model for bars of varied diameter, length, and initial eccentricity, and a mathematical expression is fitted to the simulation results. This relationship is used to represent the response of bars in compression in a moment-curvature analysis of a reinforced concrete cross section. The compression bar may carry more or less force than a tension bar at a corresponding strain, depending on the relative influence of Poisson effects and bar slenderness. Several cross-section analyses indicate that, for the distances between stirrups prescribed in modern concrete codes, the influence of inelastic buckling of the longitudinal reinforcement on the monotonic moment capacity is very small and can be neglected in many circumstances.

A Novel Production Method for High-Fructose Glucose Syrup from Sucrose-Containing Biomass by a Newly Isolated Strain of Osmotolerant Meyerozyma guilliermondii

  • Khattab, Sadat Mohammad Rezq;Kodaki, Tsutomu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.675-683
    • /
    • 2016
  • One osmotolerant strain from among 44 yeast isolates was selected based on its growth abilities in media containing high concentrations of sucrose. This selected strain, named SK-ENNY, was identified as Meyerozyma guilliermondii by sequencing the internal transcribed spacer regions and partial D1/D2 large-subunit domains of the 26S ribosomal RNA. SK-ENNY was utilized to produce high-fructose glucose syrup (HFGS) from sucrose-containing biomass. Conversion rates to HFGS from 310-610 g/l of pure sucrose and from 75-310 g/l of sugar beet molasses were 73.5-94.1% and 76.2-91.1%, respectively. In the syrups produced, fructose yields were 89.4-100% and 96.5-100% and glucose yields were 57.6-82.5% and 55.3-79.5% of the theoretical values for pure sucrose and molasses sugars, respectively. This is the first report of employing M. guilliermondii for production of HFGS from sucrose-containing biomass.

Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method (시간의존법에 의한 금속판재 성형한계변형률의 결정)

  • Kim, S.G.;Oh, T.H.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.