• Title/Summary/Keyword: Large scale

Search Result 10,620, Processing Time 0.037 seconds

Analysis on Effect of Debris Flow Energy Mitigation by Arrangement of Cylindrical Countermeasures (원통형 토석류 대책구조물의 배치조건에 따른 에너지 저감효과 분석)

  • Kim, Beomjun;Cho, Heungseok;Han, Kwangdo;Choi, Clarence E.;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.15-27
    • /
    • 2019
  • In this study, in order to analyze the effect of cylindrical baffles on the debris flow energy, small-scale tests were conducted using a flume with cylindrical baffles. Various row numbers of installed baffles were considered as a test condition. To investigate the scale effect of debris flow and cylindrical baffles on flow characteristics, large-scale tests were also performed according to varying row numbers of baffle for same baffle configuration with small-scale tests. Both small- and large-scale test results showed that the increase of row number of baffle increase the energy dissipation effect due to reduction of the velocity and flow depth of debris flow.

Development of Probabilistic Models Optimized for Korean Marine Environment Varying from Sea to Sea Based on the Three-parameter Weibull Distribution (우리나라 해역별 해양환경에 최적화된 확률모형 개발)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.20-36
    • /
    • 2024
  • In this study, probabilistic models for the wave- and lifting forces were derived directly from long-term in-situ wave data embedding the Korean marine environment characteristics varying from sea to sea based on the Three-Parameter Weibull distribution. Korean marine environment characteristics varying from sea to sea carved out their presence on the probability coefficients of probabilistic models for wave- and lifting forces. Energetic wave conditions along the southern coast of Korea distinguish themselves from the others with a relatively large scale coefficient, small location coefficient, and shape coefficient around 1.3. On the other hand, mild marine environment along the western coast has a small variability, leading to small scale-coefficient, large location coefficient and shape coefficient around 2.0. In the sea off Mokpo, near the boundary between the South- and West Seas, marine environment was characterized by small scale-coefficient, large location coefficient, and shape coefficient around 1.2, implying that marine environments characteristics of the South-and West Sea coexist in the sea off Mokpo.

HOT GAS HALOS IN EARLY-TYPE GALAXIES AND ENVIRONMENTS

  • Kim, Eunbin;Choi, Yun-Young;Kim, Sungsoo S.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • We investigate the dependence of the extended X-ray emission from the halos of optically luminous early-type galaxies on the small-scale (the nearest neighbor distance) and large-scale (the average density inside the 20 nearest galaxies) environments. We cross-match the 3rd Data Release of the Second XMMNewton Serendipitous Source Catalog (2XMMi-DR3) to a volume-limited sample of the Sloan Digital Sky Survey (SDSS) Data Release 7 with $M_r$ < -19.5 and 0.020 < z < 0.085, and find 20 early-type galaxies that have extended X-ray detections. The X-ray luminosity of the galaxies is found to have a tighter correlation with the optical and near infrared luminosities when the galaxy is situated in the low large-scale density region than in the high large-scale density region. Furthermore, the X-ray to optical (r-band) luminosity ratio, $L_X/L_r$, shows a clear correlation with the distance to the nearest neighbor and with large-scale density environment only where the galaxies in pair interact hydrodynamically with seperations of $r_p$ < $r_{vir}$. These findings indicate that the galaxies in the high local density region have other mechanisms that are responsible for their halo X-ray luminosities than the current presence of a close encounter, or alternatively, in the high local density region the cooling time of the heated gas halo is longer than the typical time between the subsequent encounters.

A Study of the Bituminous Coal Oxidation Factor in Large Scale Boilers for Estimating GHG Emissions

  • Lee, See-Hyung;Kim, Jin-Su;Lee, Jeong-Woo;Lee, Seung-Hee;Lee, Seong-Ho;Jeon, Eui-Chan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • Korea-specific GHG emissions should be estimated correctly in order to ensure effective measurement of climate change variables. The use of country-specific data that reflects fuel and technology characteristics is needed for accurate GHG emissions estimation. Oxidation factors are used to convert existing data into equivalent GHG emissions, and changes in these oxidation factors are directly related to changes in emissions. As such, the oxidation factor is one of the most important variables in using country-specific data to determine GHG emissions. In this study, the oxidation factor of bituminous coal in large scale boilers was estimated using 4,527 data points sampled from eight large-scale boilers that had been using bituminous coal for two years. The average oxidation factor was determined to be 0.997, which is lower than the oxidation factor of 1 that is recommended by the IPCC G/L for large scale boilers when estimating national GHG emissions. However, an oxidation factor less than 1 is assumed for fluidized bed boilers, internal combustion engines, and other small-scale boilers. Accordingly, studies on oxidation factor estimation should be continued to allow for accurate estimation of GHG emissions.

Liquid entrainment through a large-scale inclined branch pipe on a horizontal main pipe

  • Gu, Ningxin;Shen, Geyu;Lu, Zhiyuan;Yang, Yuenan;Meng, Zhaoming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1164-1171
    • /
    • 2020
  • T-junction structures play an important role in nuclear power plant systems. Research on liquid entrainment is mostly based on small-scale branch pipes (d/D ≤ 0.2) and attention paid to large-scale branch pipes (0.33 < d/D < 1) is insufficient. Accordingly, this study implements a series of experiments on the liquid entrainment of T-junction with different angles (32.2°,47.9°,62.3°,90°) through a large-scale branch (d/D = 0.675). The onset liquid entrainment is related to the gas phase Froude number Frg, the dimensionless gas chamber height hb/d and the branch pipe angle 𝜃. As Frg increases, hb/d also rises. With a constant hb/d, the onset liquid entrainment changes from droplets entrainment by the gas phase to that by the rising liquid film. The steady-state liquid entrainment is related to w3g, h/d and 𝜃. With constant w3g and h/d, the branch quality grows as the branch angle increases. With a certain h/d, the branch quality increases, as the w3g number increases.

Effect of Sample-loading on Fractionation Efficiency (FE) in a Large Scale Splitter-less Gravitational SPLITT Fractionation (GSF)

  • Lee, Seung-Ho;Lee, Ji-Yeon;Lee, Tae-Woo;Jung, Euo-Chang;Cho, Sung-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4291-4296
    • /
    • 2011
  • Gravitational SPLITT fractionation (GSF) provides separation of colloidal particles into two subpopulations in a preparative scale. Conventionally, GSF is carried out in a thin rectangular channel having two inlets and two outlets at the top and bottom of the channel, respectively. And the channel is equipped with two flow-splitters, one between the top and bottom inlets and another between the top and bottom outlets. A large scale splitter-less GSF system had been developed, which was designed to operate in the full feed depletion (FFD) mode. In the FFD mode, there is only one inlet through which the sample is fed, thus preventing the sample dilution. In this study, the effect of the sample-loading (in the unit of g/hr) on the fractionation efficiency (FE, number% of particles in a GSF fraction that have the sizes expected by theory) of the new large scale splitter-less FFD-GSF system was investigated. The system was tested in the sample-loading range of 3.0-12.0 g/hr with polyurethane latex beads (PU) and sea-sediment. It was found that there is an optimum range in the sample-loading for a FFD-GSF separation. It was also found that there is a general tendency of FE decreasing as the concentration of the sample suspension increases.

Oxidation-Deficient Silkworm Hemolymph as a Medium Supplement for Insect Cell Culture

  • Kim, Eun-Jeong;Park, Ji-Young;Kim, Sam-Eun;Park, Tai-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.87-90
    • /
    • 1998
  • Hemolymph is oxidized and darkens visibly during the collection from silkworm due to the activity of tyrosinase in it. Toxic quinones are produced by the oxidation and consequently inhibit the cell growth. Heat treatment can be used to prevent the oxidation ; however, the oxidation may occur during the collection of hemolymph before it is heat-treated. It makes the hemolymph collection difficult especially on a large-scale preparation. Hemolymphs collected from 257 different strains of silkworms were examined to select the slowly oxidized hemolymphs. Hemolymphs collected from mutant strains such as Lemone, TBO, Cre, Y4, and wEb showed relatively slow color changes. Oxidation rates of the hemolymphs were measured by the absorbance change using a spectrophotometer. The hemolymph of wEb showed the slowest oxidation. The absorbance of this mutant hemolymph reached the saturation value at 20$^{\circ}C$ in 450 min, whereas the total oxidation time of the wild-type (Baekokjam) hemolymph at the same temperature was 120 min. We tested if this mutant hemolymph is useful as a medium supplement for insect cell culture. Cell growth rate and final cell concentration in the medium supplemented with the wEb hemolymph were almost same as those in the medium supplemented with the wild-type hemolymph. Hemolymph is collected on a small scale by clipping the abdominal leg; however, this method is not appropriate fro large scale preparation. Centrifugation after chopping the silkworm hemolymph by a blending mixer is a more appropriate procedure for large scale collection. Slowly oxidized wEb hemolymph resulted in higher cell concentration than the wild-type hemolymph when hemolymph was collected by the large scale preparation method.

  • PDF

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

  • Obed Jackson Amoah;Samir Bahadur Thapa;Su Yeong Ma;Hue Thi Nguyen;Morshed Md Zakaria;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1154-1163
    • /
    • 2024
  • Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.

A Review of the Observation-based Framework for the Study of Aerosol-Cloud-Precipitation Interactions (CAPI) (에어로솔-구름-강수 상호작용 (CAPI) 연구를 위한 관측 방법론 고찰)

  • Kim, Byung-Gon
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.437-447
    • /
    • 2012
  • There is still large uncertainty in estimating aerosol indirect effect despite ever-escalating efforts and virtually exponential increase in published studies concerning aerosol-cloud-precipitation interactions (CAPI). Probably most uncertainty comes from a wide range of observational scales and different platforms inappropriately used, and inherent complex chains of CAPI. Therefore, well-designed field campaigns and data analysis are required to address how to attribute aerosol signals along with clouds and precipitation to the microphysical effects of aerosols. Basically, aerosol influences cloud properties at the microphysical scales, "process scale", but observations are generally made of bulk properties over a various range of temporal and spatial resolutions, "analysis scale" (McComiskey & Feingold, 2012). In the most studies, measures made within the wide range of scales are erroneously treated as equivalent, probably resulting in a large uncertainty in associated with CAPI. Therefore, issues associated with the disparities of the observational resolution particular to CAPI are briefly discussed. In addition, the dependence of CAPI on the cloud environment such as stability and adiabaticity, and observation characteristics with varying situations of CAPI are also addressed together with observation framework optimally designed for the Korean situation. Properly designed and observation-based CAPI studies will likely continue to accumulate new evidences of CAPI, to further help understand its fundamental mechanism, and finally to develop improved parameterization for cloud-resolving models and large scale models.