DOI QR코드

DOI QR Code

A Review of the Observation-based Framework for the Study of Aerosol-Cloud-Precipitation Interactions (CAPI)

에어로솔-구름-강수 상호작용 (CAPI) 연구를 위한 관측 방법론 고찰

  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 김병곤 (강릉원주대학교 대기환경과학과)
  • Received : 2012.08.13
  • Accepted : 2012.09.25
  • Published : 2012.12.31

Abstract

There is still large uncertainty in estimating aerosol indirect effect despite ever-escalating efforts and virtually exponential increase in published studies concerning aerosol-cloud-precipitation interactions (CAPI). Probably most uncertainty comes from a wide range of observational scales and different platforms inappropriately used, and inherent complex chains of CAPI. Therefore, well-designed field campaigns and data analysis are required to address how to attribute aerosol signals along with clouds and precipitation to the microphysical effects of aerosols. Basically, aerosol influences cloud properties at the microphysical scales, "process scale", but observations are generally made of bulk properties over a various range of temporal and spatial resolutions, "analysis scale" (McComiskey & Feingold, 2012). In the most studies, measures made within the wide range of scales are erroneously treated as equivalent, probably resulting in a large uncertainty in associated with CAPI. Therefore, issues associated with the disparities of the observational resolution particular to CAPI are briefly discussed. In addition, the dependence of CAPI on the cloud environment such as stability and adiabaticity, and observation characteristics with varying situations of CAPI are also addressed together with observation framework optimally designed for the Korean situation. Properly designed and observation-based CAPI studies will likely continue to accumulate new evidences of CAPI, to further help understand its fundamental mechanism, and finally to develop improved parameterization for cloud-resolving models and large scale models.

Keywords

References

  1. 김병곤, 권태영, 2006: 지상원격탐사를 이용한 에어러솔 간접효과 연구. 한국대기환경학회지, 22(2), 235-247.
  2. 김유준, 이진화, 김병곤, 2011: 한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석. 한국대기환경학회지, 27(2), 152-167.
  3. 은승희, 채상희, 김병곤, 장기호, 2011: 한반도 중부지역에서 약한 강수에 미치는 도시화 효과. 대기지, 21(3), 229-241.
  4. Ackerman, T. P. and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 38-44.
  5. Albrecht, B. A., 1989: Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  6. Alpert, P., N. Halfon, and Z. Levin, 2008: Does Air Pollution Really Suppress Precipitation in Israel?, J. Appl. Meteor. Climatol., 47(4), 933-943. https://doi.org/10.1175/2007JAMC1803.1
  7. Alpert, P., N. Halfon, and Z. Levin, 2008: Does Air Pollution Really Suppress Precipitation in Israel?, J. Appl. Meteor. Climatol., 47(4), 933-943. https://doi.org/10.1175/2007JAMC1803.1
  8. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silvas-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337-1342. https://doi.org/10.1126/science.1092779
  9. Ayers, G. P., 2005: Air pollution and climate change: has air pollution suppressed rainfall over Australia?. Clean Air & Environ. Quality, 39(2), 51-57.
  10. Ballasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502-505. https://doi.org/10.1126/science.1204994
  11. Coakley, J. A., and Coauthors, 2000: The appearance and disappearance of ship tracks on large spatial scales. J. Atmos. Sci., 57, 2765-2778. https://doi.org/10.1175/1520-0469(2000)057<2765:TAADOS>2.0.CO;2
  12. Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey aerosol indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30(6), 1287, doi:10.1029/2002GL016633.
  13. Feingold, G., R. Furrer, P. Pilewskie, L. Remer, Q. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.
  14. Feingold, G., 2012: Old and New Paradigms for Aerosol-Cloud-Precipitation studies. ASR 2012 annual meeting.
  15. Ferek, R. J. and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 2707-2728, doi:10.1175/1520-0469(2000).
  16. Kaufman, Y. J. and I. Koren, 2006: Smoke and Pollution Aerosol Effect on Cloud Cover. Science, 313, 655-658, DOI: 10.1126/science.1126232.
  17. Kim, B.-G., S. E. Schwartz, M. A. Miller, and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108(D23), 4740, doi:10.1029/2003JD003721
  18. Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. Liu, and Q. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, doi:10.1029/2007JD008961.
  19. Kim, B.-G., M. H. Choi, and C. H. Ho, 2009: Weekly periodicities of meteorological variables and their possible association with aerosols in Korea. Atmos. Environ., 43(38), 6058-6065. https://doi.org/10.1016/j.atmosenv.2009.08.023
  20. Kim, Y. J, B.-G. Kim, M. Miller, Q. Min, and C.-K. Song, 2012: Enhanced Aerosol-Cloud Relationships in More Stable and Adiabatic Clouds. Asia-Pacific J. Atmos. Sci., 48(3), 283-293. https://doi.org/10.1007/s13143-012-0028-0
  21. Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins, 2004: Measurements of the effect of smoke aerosol on inhibition of cloud formation. Science, 303, 1342-1345. https://doi.org/10.1126/science.1089424
  22. Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855-864. https://doi.org/10.1007/s00382-006-0114-z
  23. Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical developments of clouds and precipitation. Nat. Geosci., doi:10.1038/NGEO1313.
  24. Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass burning-derived aerosols on precipitation and clouds in the Amazon Basin: Asatellite-based empirical study J. Geophys. Res. 111, D19204, doi:10.1029/2005JD006884.
  25. Lu, C., Y. Liu, and S. Niu, 2011: Examination of turbulent entrainmentmixing mechanisms using a combined approach. J. Geophys. Res., 116, D20207, doi:10.1029/2011JD015944.
  26. Lu, C., S. S. Yum, S. Niu, and S. Endo, 2012: A new approach for estimating entrainment rate in cumulus clouds. Geophys. Res. Lett., 39, L04802, doi:10.1029/2011GL050546.
  27. McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min, and J. A. Ogren, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006.
  28. McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12, doi:10.5194/acp-12-1031-2012.
  29. Niu, F. and Z. Li, 2011: Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations. Atmos. Chem. Phys. Discuss., 11, 5003-5017, doi:10.5194/acpd-11-5003-2011.
  30. Robinson, W. S., 1950: Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15, 351-357. https://doi.org/10.2307/2087176
  31. Rosenfeld D., and I. M. Lensky, 1998: Satellite based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457-2476 https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
  32. Rosenfeld D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. , 26(20), 3105-3108, doi:10.1029/1999GL006066.
  33. Rosenfeld D., 2000: Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 287(5459), 1793-1796. https://doi.org/10.1126/science.287.5459.1793
  34. Rosenfeld D., and W. L. Woodley, 2000: Deep Convective Clouds with Sustained Supercooled Liquid Water Down to-37.5 degrees C. Nature, 405, 440-442. https://doi.org/10.1038/35013030
  35. Rosenfeld D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Nati. Acad. Sci., 98, 5975-5980. https://doi.org/10.1073/pnas.101122798
  36. Rosenfeld D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 321, 1309-1313. https://doi.org/10.1126/science.1160606
  37. Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai, 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108(D22), 4699, doi:10.1029/2002JD003359.
  38. Shinozuka, Y. and J. Redemann, 2011: Horizontal variability of aerosol optical depth observed during the ARCTAS airborne experiment. Atmos. Chem. Phys., 11, 8489-8495, doi:10.5194/acp-11-8489-2011.
  39. Shao, H. and G. Liu, 2006: Influence of mixing on evaluation of the aerosol first indirect effect. Geophys. Res. Lett., 33, L14809, doi:10.1029/2006GL026021.
  40. Stevens, B. and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607-613, doi:10.1038/nature08281.
  41. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.
  42. Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251-1256. https://doi.org/10.1016/0004-6981(74)90004-3
  43. Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.
  44. Quaas, J., and Coauthors, 2009: Aerosol indirect effects-General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697-8717, doi:10.5194/acp-9-8697-2009.