• Title/Summary/Keyword: Large display panel

Search Result 202, Processing Time 0.033 seconds

Optical System Design for Projection TV using Micro Display (마이크로 디스플레이를 이용한 프로젝션 TV용 광학계 설계)

  • Park, Sung-Chan;Lee, Jung-Yul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • This paper discusses the optical system design for projection TV using LCOS type micro display, which provides the high resolution, slim depth, and a large screen of more than 60 inches. We analyzed the relationship between the illumination system, projection lens, color separation & recombination system, and micro display. From this quantitative analysis, the starting data for the optimum light engine was defined, and all optical systems were designed by an optimization process. Three RGB panels were proposed for a high luminence system, and the four prisms symmetrically located make equal optical path lengths for the RGB rays. This color separation & recombination system enables the a compact illumination system. Also, in order to the slim light engine with high resolution, the folded projection lens system was designed by inserting a mirror between projection lenses.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

EFFECTS OF PLACEMENT OF A TORUS PLATE COVER ON AIR FLOW IN A SPINNER EQUIPMENT (원환형 덮개장착이 스피너 장비의 기류에 미치는 영향)

  • Kwak H.S.;Yang J.O.;Lee S.W.;Park S.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.52-58
    • /
    • 2006
  • A numerical investigation is made of air flow in a spinner equipment used for cleanning and drying flat display panels. A unique feature of the spinner under question is the placement of a torus plate cover over the rotating plate. The turbulent flow is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber. The flow is modelled as an axisymmetric two-dimensional flow and computation is conducted by using the FLUENT package with a version of k-$\varepsilon$ turbulence model. The required capacity of the exhaust system is assessed numerically. The usefulness of the cover in controlling air flow circulation is examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiment.

Automatic TFT-LCD Mura Inspection Based on Studentized Residuals in Regression Analysis

  • Chuang, Yu-Chiang;Fan, Shu-Kai S.
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.148-154
    • /
    • 2009
  • In recent days, large-sized flat-panel display (FPD) has been increasingly applied to computer monitors and TVs. Mura defects, appearing as low contrast or non-uniform brightness region, sometimes occur in manufacturing of the Thin-Film Transistor Liquid-Crystal Displays (TFT-LCD). Implementation of automatic Mura inspection methods is necessary for TFT-LCD production. Various existing Mura detection methods based on regression diagnostics, surface fitting and data transformation have been presented with good performance. This paper proposes an efficient Mura detection method that is based on a regression diagnostics using studentized residuals for automatic Mura inspection of FPD. The input image is estimated by a linear model and then the studentized residuals are calculated for filtering Mura regions. After image dilation, the proposed threshold is determined for detecting the non-uniform brightness region in TFT-LCD by means of monitoring the every pixel in the image. The experimental results obtained from several test images are used to illustrate the effectiveness and efficiency of the proposed method for Mura detection.

Development of a Sensor Calibration to Enhance the Performance of a Non-contact Laser Optical Sensor Unit (비접촉 레이저 광센서의 성능 향상을 위한 센서보정에 관한 연구)

  • Seo, Pyeong-Won;Ryu, Young-Kee;Oh, Choon-Suk;Byun, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.579-581
    • /
    • 2006
  • Flat panel image display devices such as TFT LCD and PDP have required more large area and high quality control components. To control the qualities of the components, measurements of the flatness of a plate glass has been required. In order to measure the shape of the specular objects, Non-Contact Optical Sensor using Hologram laser unit was proposed. The sensor has a optical system that is composed of a Hologram laser and objective lens. The temperature of the sensor body is controlled by TEC(Thermoelectric Cooler) to maintain the same wavelength of the diode laser. In this research, we proposed the calibration scheme to make sensor real time measuring sensor. From the experimental results we see that the proposed sensor unit can measure the position of the glass surface in rial time.

  • PDF

LCD 제조용 스퍼터링 장비의 비접촉식 유리평판 이송장치에 대한 수치적 연구

  • Gang, U-Jin;Im, Ik-Tae;Kim, U-Seung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.149-156
    • /
    • 2007
  • Non-contact transportation of the large-sized glass plate using air-cushion is considered for sputtering system of LCD panel. The Argon gas from second gas injection holes is injected to levitate and transport the glass plate. Low maximum pressure and uniform pressure distribution on the bottom surface of the glass plate must be maintained for stable levitation and transportation of the glass plate. Therefore, the analysis of fluid flow between the glass plate and the air-pad is numerically performed for varying space between the injection holes in this study. The pressure uniformity on the bottom surface of the glass plate is evaluated for overall glass plate. The distance between the injection holes must be designed below 90 mm for obtaining the low maximum pressure and uniform pressure distribution.

  • PDF

Influence of Micro-Pattern Replication Ratio of Injection-Molded Light Guide Plate on Optical Aspect of LCD (도광판의 미세 패턴 사출 전사성이 LCD 광특성에 미치는 영향에 관한 해석적 연구)

  • Hong, J.P.;Joo, B.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Accurate optical texturing of light guide plate over the entire surface area is an important technical issue in LCD TV industry. Injection molding process has the potential to produce large light guide plates having highly efficient optical textures such as micro-prism array. This study is focused on the effect of the degree of replication of the micro texture of the 40" injection molded light guide plates on the overall optical performance of the display panel. Measured replication ratios of the micro-textures formed with three different types of injection molding process were considered in the modeling of prismatic micro segment array. Optical simulation was conducted and results were discussed.

A Repair Technology Trends of TFT-LCD Production

  • Jee, Young-Su;Cho, Jang-Ho;Shin, Gyu-Sung;Kim, Dae-Kyung;Kim, Hyun-Jung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1263-1266
    • /
    • 2008
  • TFT-LCD panel makers have been enlarging size of TV screens, and 50-inch TFT-LCD is one of the main stream products already. To have more improved resolution, productivity and lower manufacturing cost, new TFT-LCD factories adopt large mother glass, new TFT structure and new process/materials. Along with these technology evolution, laser repair system should equip with upgraded performance and additional functions on user's demand. Laser repair technology is reviewed and newly developed repair technology is being introduced.

  • PDF

A Novel Voltage-Programming Pixel with Current-Correction Method for Large-Size and High-Resolution AMOLEDs on Poly-Si Backplane

  • In, Hai-Jung;Bae, Joon-Ho;Kang, Jin-Sung;Kwon, Oh-Kyong;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.901-904
    • /
    • 2005
  • A novel active matrix organic light diodes (AMOLEDs) voltage-programming pixel structure with current-correction method is proposed for largesize and high-resolution poly-Si AMOLED panel applications. The HSPICE simulation results shows that the maximum error of emission current in proposed pixel is 1.536%, 2.45%, and 2.97% with the ${\pm}12.5%$ mobility variation and ${\pm}0.3V$ threshold voltage variation for 30-, 40-, and 50-inch HDTV panels, respectively.

  • PDF

Error Correction of Laser Interferometer Using Capacitive Sensor (정전용량센서를 이용한 레이저 간섭계 오차보정)

  • Kim, Jae-Cheon;Seo, Suk-Hyun;Jeon, Jae-Wook;Park, Ki-Heon;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.342-344
    • /
    • 2006
  • During last years, large investments have been directed to development and research of nano-technological products like semiconductor, display panel, optic-fiber communication components, life technology, and ultra-precision components. All quantitative measurements at nanometre scale should guarantees accurate results and high quality. Laser interferometer is one of most famous nanometre scale devices to be able to measure metre-scale distance with nanometre scale resolution, but it is easily affected by various error causes like geometrical, instrumental and environmental factor. On the other side, capacitive sensor is robust to above error factors, but it is able to measure relatively shorter distance, under $100{\mu}m$, than laser interferometer. New error correction method for laser interferometry using capacitive sensor will be introduced in this paper.

  • PDF