• Title/Summary/Keyword: Large crystal

Search Result 752, Processing Time 0.031 seconds

A study on the repeatability of large size of AlN single crystal growth (AlN 단결정 성장에 대한 반복 성장성에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.148-151
    • /
    • 2018
  • A large single crystal of AlN was grown by PVT (Physical Vapor Transport) method. The AlN crystal shaped hexagonal of the diameter of about 46 mm and the thickness of 7.6 mm was grown using 33 mm seed crystal which was grown and made by ourselves. We tried to find out repeatable growth possibility for AlN crystal growth and then to evaluate the repeatability of the growth condition of the temperature of $1950{\sim}2100^{\circ}C$ and the ambient pressure of 0.1~1 atm.

Issue of Large Diameter Si Wafer Making

  • Takasu, Shin.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.88-138
    • /
    • 1996
  • Electronics grew up to the largest industry in the world supported by Si wafer. In near future, the Si wafer may use 300mm in diameter for economic requirement. This size wafer may use to produce large logic chip, 256Mbit DRAM, and other large complex and high density chip. Then, the quality including flatness and crustal characters may be required very high performance. And, their price should be reasonable and high quantity may be required. These requirements should be solve lot of hard problems of crystal growth, wafering mechanical processing and their cost problems. In this presentation, I may discuss following items.

  • PDF

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Fabrication of a large grain YBCO bulk superconductor by homo-seeding melt growth method

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • To fabricate large grain YBCO bulk superconductors by melt process, Sm123 single crystal with a high melting point are mostly used as seeds. However, it also uses Y123 film deposited on MgO single crystal substrate. This study investigated the growth behavior of the Y123 grain during a melt process when single grain YBCO bulk was used as a seed. Single grain Y123 bulk was grown when the seed size was small. When the seed size was relatively large, multiple grains were grown but the grains were still large. Y123 seed crystal was completely decomposed during high temperature anneal at 1040℃ and new Y123 crystals were nucleated during a slow cooling stage below a peritectic temperature. Thereafter, newly formed Y123 crystals from the seed area are thought to grow into the Y1.8 powder compact. The crystallographic orientations of newly nucleated Y123 grains are independent of the crystallographic orientation of Y123 seed. It is thought that the crystallographic orientation of newly nucleated Y123 crystal can be controlled by using Y211-free Y123 single crystal as a seed of homo-seeding melt growth.

CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA

  • Kim, Min Kyu;Lee, Hyeonmi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.427-442
    • /
    • 2014
  • A previous work gave a combinatorial description of the crystal B(${\infty}$), in terms of certain simple Young tableaux referred to as the marginally large tableaux, for finite dimensional simple Lie algebras. Using this result, we present an explicit description of the crystal B(${\lambda}$), in terms of the marginally large tableaux, for the $G_2$ Lie algebra type. We also provide a new description of B(${\lambda}$), in terms of Nakajima monomials, that is in natural correspondence with our tableau description.

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Characterization of the grown - in defects in the large diameter silicon crystal grown by Czochralski method (대구경 규소 Czochralski 단결정 속의 결정 결함 규명)

  • 이보영;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • Grown-in defects like OISF and FPD in the large diameter(> 8 inch)of silicon crystal are characterized. It was revealed that the presence of the ring-patterned OISF would deterorate the minority life time of the silicon crystal. Through the cooling experiment from the $1250^{\circ}C$, the nucleation of the OISF was confirmed to follow the homogeneous nucleation and growth process. In addition to OISF nucleus, crystal originated particle, which was known to be closely related with FPD (Flow Pattern Defects), was found to depend on the pulling rate of the crystal. Combination of the lower rate of the pulling and the faster cooling near the $950^{\circ}C$ is proposed to be effective method in reducing the generation of these grown-in defects.

  • PDF

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

The growth of large KTP crystal and the study of its optical inhomogeneity (대형 KTP 단결정 성장 및 광학적 불균일성에 관한 연구)

  • Han, J.Y.;Lee, S.K.;Ma, D.J.;Kim, Y.H.;Park, S.S.;Lee, S.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.76-82
    • /
    • 1994
  • Single crystals of Potassium Titanyl Phosphate (KTP) were grown from the flux of $K_6P_4O_13(K_6)$ using a high temperatures solution growth method. To grow the large KTP crystal without inclusion, the temperature gradient in furnace, crystal rotation, orientation of seed crystal, and the cooling rate were controled. The KTP crystals are up to $10(a){\times}28(b){\times}33(c)mm^3$ in size. We investigated the optical inhomogeneity in this KTP crystal by the SHG power measurement and TEM analysis.

  • PDF