• Title/Summary/Keyword: Large Scale Load Test

Search Result 185, Processing Time 0.023 seconds

The Reliability of SIP Pile in Layered Ground (다층토 지반에서 매입말뚝(SIP)의 신뢰성 연구)

  • 이민선;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.567-574
    • /
    • 2002
  • Rapid urbanization of many cities require large scale constructions such as high rise buildings in difficult ground conditions. SIP(Soil-cement Injected Precast pile) type piles are tile most popular choice of foundation method in soft ground as well as layered ground in many cities in Korea since SIP offer negligible amount of noise and vibration. But SIP method of construction provide wide range of pile capacity depending on the construction method, equipment, ground conditions and quality control method etc. Therefore this paper intend to investigate the reliability of SIP pile in layered ground through a comparison of existing design formulars and SIP pile load test.

  • PDF

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Cracks evolution and multifractal of acoustic emission energy during coal loading

  • Kong, Xiangguo;Wang, Enyuan;He, Xueqiu;Liu, Xiaofei;Li, Dexing;Liu, Quanlin
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Coal samples with different joints morphology were subjected to uniaxial compression experiments, cracks evolution was recorded by Nikon D5300 and acoustic emission (AE) energy signals were collected by AEwin Test for Express-8.0. During loading process, coal samples deformed elastically with no obvious cracks changes, then they expanded gradually along the trace of the original cracks, accompanied by the formation of secondary cracks, and eventually produced a large-scale fracture. It was more interesting that the failure mode of samples were all shear shape, whatever the original cracks morphology was. With cracks and damage evolution, AE energy radiated regularly. At the early loading stage, micro damage and small scale fracture events only induced a few AE events with less energy, while large scale fracture leaded to a number of AE events with more energy at the later stage. Based on the multifractal theory, the multifractal spectrum could explain AE energy signals frequency responses and the causes of AE events with load. Multifractal spectrum width (${\Delta}{\alpha}$), could reflect the differences between the large and small AE energy signals. And another parameter (${\Delta}f$) could reflect the relationship between the frequency of the least and greatest signals in the AE energy time series. This research is helpful for us to understand cracks evolution and AE energy signals causes.

Design of Large-scale Drilled Shaft (대구경 현장타설말뚝의 설계 사례)

  • Im, Chul-O;Choi, Young-Seok;Kwak, Ki-Seok;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.545-553
    • /
    • 2009
  • A lot of long-span marine bridge, which connects land to island or island to island, are being designed and constructed lately in south-west coast in South Korea. In the past, caisson foundations in marine were mainly adopted in construction and stability aspect, however, nowadays with development of pile construction technology, drilled shaft foundations are mainly adopted. As the long span cable stayed bridge and suspension bridge applied with lots of loads are being designed, the scale of pile foundations are getting larger. As the construction cost of substructure including foundation in marine bridges is too high, the appropriate evaluation of the axial bearing capacity of pile becomes a core factor to decide the construction cost of foundation if the drilled shaft is adopted as foundation type of bridge. The evaluation values of skin friction and end bearing capacity of drilled shaft in weathered rock suggested in south Korea are only to introduce the foreign specifications, and most of them are designed in a kind of hard soil layer. Also the allowable load of pile section is less than the expected bearing capacity of pile in the soil condition since the allowable capacity of pile is undervalued. Recently in order to improve this factor the bi-axial hydraulic load test of pile was taken, the data of load transfer analysis of pile, unit of skin friction and end bearing capacity are accumulated. In our country, the design of piles are made with ASD, however, LRFD considering service, strength and extreme state was adopted in Incheon Grand Bridge implemented with BTL, and the research to systematize the resistance coefficient appropriate at home country are being progressed.

  • PDF

Application of operating vehicle load to structural health monitoring of bridges

  • Rafiquzzaman, A.K.M.;Yokoyama, Koichi
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-293
    • /
    • 2006
  • For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.

Feasibility Study on Similarity Principle in Discrete Element Analysis (이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토)

  • Yun, Taeyoung;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

A Study on Optimal Electric Load Distribution and Generator Operating Mode Using Dynamic Programming (동적계획법을 이용한 발전기의 운전모드 및 최적부하 배분에 관한 연구)

  • H-H Yoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • Since the oil crisis in 1970, a great deal of effort has been made to develop automatic electric load sharing systems as a part of the efforts to save energy. A large scale electric generating system composes more than two generators whose characteristics may be different. When such a system is operated individually or in parallel, the lagrange multiplier's method has difficulty in achieving optimal load distribution because generators usually have the limitations of the operating range with inequality constraints. Therefore, a suitable operating mode of generators has to be decided according to the selection of the generators to meet electric power requirements at the minimum cost. In this study, a method which solves the optimal electric load distribution problem using the dynamic programming technique is proposed. This study also shows that the dynamic programming method has an advantage in dealing with the optimal load distribution problem under the limitations of the operating range with inequality constraints including generator operation mode. In this study, generator operating cost curve of second order equation by shop trial test results of diesel generators are used. The results indicate that the proposed method can be applied to the ship's electric generating system.

Interconnection of Dispersed Generation Systems considering Load Unbalance and Load Model in Composite Distribution Systems (부하불평형 및 부하모형을 고려한 복합배전계통의 분산형전원의 연계 방안)

  • 이유정;김규호;이상근;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.266-274
    • /
    • 2004
  • This paper presents a scheme for the interconnection of dispersed generator systems(DGs) based on load .unbalance and load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The unbalance is involved with many single-phase line segment. . Voltage profile improvement and system loss minimization by installation of DGs depend greatly on how they are placed and operated in the distribution systems. So, DGs can reduce distribution real power losses and replace large-scale generators if they are placed appropriately in the distribution systems. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 13 bus and 34 bus test systems to demonstrate its effectiveness.