• Title/Summary/Keyword: Large Scale Blackout

Search Result 9, Processing Time 0.036 seconds

Critical Contingency Analysis for a Short-term System Operation Planning in Korea (우리나라 단기계통운용계획을 위한 가혹 상정고장 분석)

  • Lee, Jeobng Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.507-517
    • /
    • 2005
  • This paper presents the results of critical contingency analysis for the Korean power system which is performed to identify the impact of the critical contingencies on the Korean power system and set up a short term system operation planning for the purpose of preventing large scale blackout. The static and dynamic simulation is carried out for each critical contingency and the simulation results for each contingency are shown under the peak load condition for the year 2005, 2007 and 2010.

A Study on the Large-Scale Power Blackout Management System in the Level of National Crisis Management (대규모 정전상태에 대비한 국가위기관리 방향에 관한 연구)

  • Cho, Kwang-Rae;Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.10
    • /
    • pp.387-407
    • /
    • 2005
  • Thanks to the developments of IT technologies, such critical infrastructures as fundamental structures of energies, material circulations, monetary circulations, and living necessaries are intertwined as well as mutually dependent. In this respect, the fact that national infrastructures are closely related to IT infrastructures implies not only expected benefits to provide diverse information-based services, but also anticipated costs to bring about new dangers. However, in spite of these threats, traditional researchers have not put enough interests in these indirect danger, which yield the damages in broad areas through paralyzing risk management systems, although they have investigated such direct threats as nuclear accidents, conflagrations, traffic troubles, and gasoline accidents. Considering that the tendency to depend on electricity, so-called electrification, which is caused by automation and informationalization, is intensified in all parts of society, the breakout problem as a factor to inhibit securities in information-oriented society is significant. Thus, the problems of large-scale power blackout should be treated as national crises. Also, preparation systems for large-scale power blackout have to be provided quickly. In this paper, with analyzing various cases of large-scale power blackout and investigation the causes of them, researches on the blackout management systems of Korea are to be present, on the basis of national crisis management states which are comprised of protection (mitigating and preparing), responding, and recovering(rewarding).

  • PDF

Development of Demand Response Algorithm Considering Transient Stability (과도안정도를 고려한 부하차단 알고리즘의 개발)

  • Shim, Keon-Bo;Kim, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.10
    • /
    • pp.475-479
    • /
    • 2005
  • Nowadays large-scale blackout was occurred in many developed countries. The do-regulation and competition in power industry might have an effort on the disaster. The demand response algorithm for protecting it is needed, and developed introducing the concept of transient stability by nonlinear transition matrix. Two case studies are carried out.

Development of Demand Response Algorithm Considering Transient Stability (과도안정도를 고려한 부하차단 알고리즘의 개발)

  • Shim Keon Bo;Kim Jung Hoon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.150-152
    • /
    • 2004
  • Nowadays large-scale blackout was occurred in many developed countries. The dereguration and competition in power industry might have an effort on the disaster The demand response algorithm for protecting it is needed. and developed introducing the concept of transient stability by nonlinear transition matrix Two case studies are carried out.

  • PDF

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

A Study on the Benefit Estimation of MMC VSC-HVDC System (MMC VSC-HVDC의 경제성평가에 관한 연구)

  • Sun, Hwi-il;Park, Seong-Mi;Yoo, Dong-Wook;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Recently, interest in the DC transmission is rapidly increasing worldwide. In many countries and leading companies are prior to the aggressive development of HVDC technology and application. Especially, VSC-HVDC system has been widely applied to transfer power at long distance between power plant and power consumption area. Therefore in this paper, we analyzed the benefit-cost of VSC-HVDC system which has more advantages than existing transmission system. The proposed system is MMC(Modular Multilevel Converter) VSC-HVDC system that have stability of Power Grid, interconnect Large-scale New Power Generation Plants by prevents Blackout. And MMC VSC-HVDC system Reduced the loss importing foreign systems. And the benefits were calculated in four stages, and the costs were applied to the actual project. By evaluating the various avoidance costs compared to the benefit-cost, it was confirmed that MMC VSC-HVDC system was advantageous in system stability and economic and social benefits.

Probabilistic Reliability Analysis of KEPCO System Using TRELSS

  • Tran Trung Tinh;Kwon Jung-Ji;Choi Jae-Seok;Choo Jin-Boo;Jeon Dong-Hun;Han Kyoeng-Nam;Billinton Roy
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • The importance of conducting necessary studies on grid reliability evaluation has become increasingly important in recent years due to the number of blackout events occurring throughout the world. Additionally, quantitative evaluation of transmission system reliability is very important in a competitive electricity environment. The reason behind this is that successful operation of an electric power company under a deregulated electricity market depends on transmission system reliability management. The results of many case studies for the Korea Electric Power Cooperation (KEPCO) system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6.2 are illustrated in this paper. The TRELSS was developed by EPRI and Southern Company Services Inc. This paper presents the reliability analysis of KEPCO system expansion planning by using the TRELSS program.

Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System (에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가)

  • Hong, Jong-Seok;Choi, Chang-Ho;Lee, Joo-Yeon;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.

Microscopic Evacuation Simulation in Large-scale Buildings using EgresSIM (EgresSIM을 이용한 대형건축물의 미시적 대피시뮬레이션)

  • Kwak, Suyeong;Nam, Hyunwoo;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • This paper introduces 'EgresSIM', which is microscopic evacuation simulation software. EgresSIM developed in this paper is a three-dimensional (3D) pedestrian evacuation simulator based on the improved model advanced from the floor field model(FFM), a microscopic pedestrian model. This software can simulate large size buildings that consist of a number of floors, stairs, rooms, and exit doors. Moreover, this software can arrange several hundreds or thousands of pedestrians in indoor space and check their movements through the 3D viewer in real time, as well as produce detailed results about evacuation situations such as which paths are employed by individual pedestrians, how long does it takes to evacuate, and how many evacuees are gathered at each of the exit doors. Building data needed in the simulation are constructed as XML files according to pre-defined indoor data models and information of simulation results is also created as XML log files. A moving pattern of pedestrians can be represented in many ways by adjusting the sensitivity parameters of two walk models supported by EgresSIM. Thus, evacuation simulation can be done based on many assumptions of situations such as movement to the nearest exit door or blackout after outage.