• Title/Summary/Keyword: Large Objects

Search Result 880, Processing Time 0.043 seconds

Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns

  • Kim, Hyun-su;Danylyuk, Serhiy;Brocklesby, William S.;Juschkin, Larissa
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.245-250
    • /
    • 2016
  • In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.

Hausdorff Distance Matching for Elevation Map-based Global Localization of an Outdoor Mobile Robot (실외 이동로봇의 고도지도 기반의 전역 위치추정을 위한 Hausdorff 거리 정합 기법)

  • Ji, Yong-Hoon;Song, Jea-Bok;Baek, Joo-Hyun;Ryu, Jae-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.916-921
    • /
    • 2011
  • Mobile robot localization is the task of estimating the robot pose in a given environment. This research deals with outdoor localization based on an elevation map. Since outdoor environments are large and contain many complex objects, it is difficult to robustly estimate the robot pose. This paper proposes a Hausdorff distance-based map matching method. The Hausdorff distance is exploited to measure the similarity between extracted features obtained from the robot and elevation map. The experiments and simulations show that the proposed Hausdorff distance-based map matching is useful for robust outdoor localization using an elevation map. Also, it can be easily applied to other probabilistic approaches such as a Markov localization method.

A Study on the Virtual Grating Projection Moire Topography for the Shape Measurement of Human Face (인체형상 측정을 위한 가상격자 영사식 무아레 방법에 관한 연구)

  • 유원재;최정표;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.49-52
    • /
    • 2001
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topogrphy is very attractive because of it s high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the $2\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the $2\pi$-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF

Adaptive Partitioning for Efficient Query Support

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.369-373
    • /
    • 2007
  • RFID systems large volume of data, it can lead to slower queries. To achieve better query performance, we can partition into active and some nonactive data. In this paper, we propose two approaches of partitioning for efficient query support. The one is average period plus delta partition and the other is adaptive average period partition. We also present the system architecture to manage active data and non-active data and logical database schema. The data manager check the active partition and move all objects from the active store to an archive store associated with an average period plus data and an adaptive average period. Our experiments show the performance of our partitioning methods.

Iterative Inversion Using Moment Method and Improved Newton`s AIgorithmin the Configuration Domain (공간영역에서 모멘트방법과 개선된 Newton 알고리즘을 이용한 반복 역산란 방법)

  • 박천석;김정혜;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.39-49
    • /
    • 1994
  • In this paper, An inversion technique to reconstruct permittivity profiles of 2-D inhomogeneous dielectric objects by iterativeprocess using the moment-methodand improved newton's algoritham is presented. In order to reduce the noise effect in the scattered fieldon the reconstructed permittivity profiles, the cell size of inversescattering is made be larger than that of forward scattering. Performing numerical calculations of dielectric scatterer it is demonstrated that this inversion is able to reconstruct dielectric objectshaving large size and inhomogeneous characteristics, which is insentive tothe noise effect in the scattered field on the reconstructed result.

  • PDF

Galaxy clustering from the UKIDSS DXS

  • Kim, Jae-U
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2012
  • Recent wide and deep surveys allow us to investigate the large scale structure of the Universe at high redshift. We present studies of the clustering of high redshift galaxies, using reprocessed UKIDSS DXS catalogue. We measure the angular correlation function of high redshift galaxies which is Extremely Red Objects (EROs). Firstly we found that their angular correlation functions can be described by a broken power-law. We also found that red or bright samples are more strongly clustered than those having the opposite characteristics, and that old, passive EROs are found to be more clustered than dustry, star-forming EROs. Additionally the average halo mass and other properties were estimated using the halo model. Finally the observed clustering of EROs was compared with predictions from the cosmological simulation.

  • PDF

Barionic Acoustic Oscillations with 3-point Correlation Function of Quasars

  • Choi, Doohyun;Rossi, Graziano;Slepian, Zachary;Eisenstein, Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2017
  • While quasars are sparse in number density, they reside at relatively high-redshift as compared to e.g. luminous red galaxies. Hence, they are likely to be less non-linearly evolved than the galaxy population, and thus have a distribution that more closely mirrors the primordial density field. Therefore, they offer an intriguing opportunity to search for Baryonic Acoustic Oscillations (BAO). To this end, the 3-point correlation function (3PCF) is an excellent statistical tool to detect BAO. In this work, we will make the first-ever measurement of the large-scale quasar 3PCF from the SDSS-IV DR14 quasar sample (spanning the largest volume to-date). This work will use the order N2-time 3PCF algorithmof Slepian & Eisenstein (2015), with N the number of objects.

  • PDF

A Study on the On-machine Profile Measurement of Large Aspheric Form using Capasitive Sensor (정전용량센서를 이용한 대구경 비구면 형상의 기상측정에 관한 연구)

  • Kim, Geon-Hee;Won, Jonh-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.56-61
    • /
    • 2003
  • This paper described about on-machine profile measurement of aspheric surfaces using contact probing technique in ultra precision machine. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime using a circle leaf spring mechanism and a capacitive-type sensor. The contact probe which is installed on the z-axis is In touch with the aspheric objects which is fixed on the spindle of the diamond turning machine(DTM) during the measuring procedure. The x, z-axis motions of the machine are monitored by a set of two orthogonal plane mirror type laser interferometers. As a results, the developed contact probe on-machine measurement system showed 10 nanometers repeatability with a ${\pm}2{\sigma}$ and uncertainty of 200 nmPv.

  • PDF

Automatic Quadrilateral Mesh Generation Using Updated Paving Technique in Various Two Dimensional Objects (다양한 2차원 영역에서의 향상된 Paving법을 이용한 자동 사각 요소 생성)

  • Yang, Hyun-Ik;Kim, Myung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1762-1771
    • /
    • 2003
  • In part of mechanical design analysis, quadrilateral mesh is usually used because it provides less approximate errors than triangular mesh. Over the decades, Paving method has been considered as the most robust method among existing automatic quadrilateral element mesh generation methods. However, it also has some problems such as unpredictable node projection and relatively large element generation. In this study, the aforementioned problems are corrected by updating the Paving method. In so doing, a part of node projection process is modified by classifying nodes based on the interior angles. The closure check process is also modified by adding more nodes while generating elements. The result shows well shaped element distribution in the final mesh without any aforementioned problems.

A study on 3-D shape measurement for the composition of human bust (인체흉상 합성을 위한 3차원 형상 측정에 관한 연구)

  • 안중근;강영준;최정표;유원재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.220-223
    • /
    • 1997
  • Moire topography method is a well-known non-contacting 3-D measuement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topography is very attractive because of it's high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the 2x-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the 2x-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF