우주론

[7 CO-01] Intrinsic alignments of emission line galaxies at z ~1.4 from the FastSound redshift survey

Motonari Tonegawa¹, Teppei Okumura², Tomonori Totani³, Gavin Dalton⁴, and Kiyoto Yabe⁵ ¹Korea Institute for Advanced Study, South Korea, ²Academia Sinica, Taiwan, ³The University of Tokyo, Japan, ⁴University of Oxford, United Kingdom, ⁵Kavli Institute for the Physics and Mathematics of

"Kavii institute for the Physics and Mathematics of the Universe, Japan

Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. We present the first measurement of IA at high redshift, z~1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape Canada-Hawaii-France information from the telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, $A_{\det} = -0.0040 pm 0.0754$ and \$A_{++}=-0.0159\pm 0.0271\$, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., \$A_{\delta+}=0.0035_{-0.0389}^{+0.0387}\$ and \$A_{++}=0.0045_{-0.0168}^{+0.0166}\$ at z=0.51 from the WiggleZ survey), suggesting no strong redshift evolution of IA. The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on estimations the cosmological parameter by \$-0.035<\Delta \sigma_8<0.026\$ and \$-0.025<\Delta \Omega_{\mathrm m}<0.019\$

[→ CO-02] Barionic Acoustic Oscillations with 3-point Correlation Function of Quasars

Doohyun Choi¹, Graziano Rossi¹, Zachary Slepian², Daniel Eisenstein³

¹Sejong University(optionally affiliation in Korea in parenthesis), ²Lawrence Berkeley National Laboratory, ³Harvard-Smithsonian Center for Astrophysics

While guasars are sparse in number density. they reside at relatively high-redshift as compared to e.g. luminous red galaxies. Hence, they are likely to be less non-linearly evolved than the galaxy population, and thus have a distribution that more closely mirrors the primordial density offer field Therefore, they an intriguing opportunity to search for Baryonic Acoustic Oscillations (BAO). To this end, the 3-point correlation function (3PCF) is an excellent statistical tool to detect BAO. In this work, we will first-ever measurement of make the the large-scale guasar 3PCF from the SDSS-IV DR14 quasar sample (spanning the largest volume to-date). This work will use the order N2-time 3PCF algorithmof Slepian & Eisenstein (2015), with N the number of objects.

[7 CO-03] Cosmological parameter constraints from galaxy-galaxy lensing with the Deep Lens Survey

Mijin Yoon and Myungkook James Jee Yonsei University

The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 deg2 survey carried out with NOAO's Blanco and Mayalltelescopes. DLS is unique in its depth reaching down to ~27th mags in BVRz bands. This enables a broad redshift baseline and is optimal for investigating cosmological evolution of the large scale structure.

Galaxy-galaxylensing is a powerful tool to estimate averaged matter distribution around lensgalaxies by measuring shape distortions of background galaxies. The signal fromgalaxy-galaxy lensing is sensitive not only to galaxy halo properties, but also to cosmological environment at large scales. In this study, we measure galaxy-galaxy lensing and galaxy clustering, which together put strong constraints on the cosmological parameters.

We obtain significant galaxy-galaxy lensing signals out to ~20 Mpc while tightly controlling systematics. The B-mode signals are consistent with zero. Our lens-source flip test indicates that minimal systematic errors are present in DLS photometric redshifts. Shear calibration is performed using high-fidelity galaxy image simulations. We demonstrate that the overall shape the galaxy-galaxy lensing signal is well of described by the halo model comprised of central and non-central halo contributions. Finally, we present our preliminary constraints on the matter