• Title/Summary/Keyword: Large Object

Search Result 1,187, Processing Time 0.031 seconds

A Study on the Extraction of the dynamic objects using temporal continuity and motion in the Video (비디오에서 객체의 시공간적 연속성과 움직임을 이용한 동적 객체추출에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.115-121
    • /
    • 2016
  • Recently, it has become an important problem to extract semantic objects from videos, which are useful for improving the performance of video compression and video retrieval. In this thesis, an automatic extraction method of moving objects of interest in video is suggested. We define that an moving object of interest should be relatively large in a frame image and should occur frequently in a scene. The moving object of interest should have different motion from camera motion. Moving object of interest are determined through spatial continuity by the AMOS method and moving histogram. Through experiments with diverse scenes, we found that the proposed method extracted almost all of the objects of interest selected by the user but its precision was 69% because of over-extraction.

The Remote Access Algorithm by Object Replication (객체 복제 기법에 의한 원격 접근 알고리즘)

  • Yun, Dong-Sik;Lee, Byeong-Gwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.799-807
    • /
    • 2000
  • In this paper, object replication Client/server under distributed computing system is design and implementation. Today many end-users have a computer communication by using internet in the distributed system of client/server. If many users request services to a specific remote server, the server should have got a overhead for hat service processing, delayed the speed for replay, and bring a bottleneck in communication network. Therefore object replication method was proposed to solve this problems. The growth of internet works and distributed applications has increased the need for large scale replicated systems. However, existing replication protocols do not address scale and autonomy issues adequately. Further, current application protocol require consistency of different levels, and therefore should be the selection function of consistency in them, in order to have particular semantics of each level. In this paper, server overhead and bottleneck happening in remote procedure call be using server object replication. Therefore access transparency can be improved by sharing object duplicately. So it will Keep up with the consistency within the replicated objects.

  • PDF

A Study on the Maintenance Scheduling based on the Object-Oriented Programming (객체 지향 기법에 기반을 둔 보수 계획 수립에 관한 연구)

  • Park, Young-Moon;Kim, Jin-Ho;Park, Jong-Bae;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.829-831
    • /
    • 1996
  • This paper is concerning on a study on the object-oriented programming and its application to maintenance scheduling. The concept of object-oriented programming enables us to modify and reuse software with much ease. By introducing object-oriented programming to maintenance scheduling, we can develop a hierarchical and reusable software in maintenance scheduling. The maintenance scheduling problem becoming more and more large and complex can be dealt with the concept of object-oriented technique and we hope this concept will give a reasonable solution. And evolutionary computation will be developed as a optimization technique.

  • PDF

Secure Object Detection Based on Deep Learning

  • Kim, Keonhyeong;Jung, Im Young
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.571-585
    • /
    • 2021
  • Applications for object detection are expanding as it is automated through artificial intelligence-based processing, such as deep learning, on a large volume of images and videos. High dependence on training data and a non-transparent way to find answers are the common characteristics of deep learning. Attacks on training data and training models have emerged, which are closely related to the nature of deep learning. Privacy, integrity, and robustness for the extracted information are important security issues because deep learning enables object recognition in images and videos. This paper summarizes the security issues that need to be addressed for future applications and analyzes the state-of-the-art security studies related to robustness, privacy, and integrity of object detection for images and videos.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

A Fire Deteetion System based on YOLOv5 using Web Camera (웹카메라를 이용한 YOLOv5 기반 화재 감지 시스템)

  • Park, Dae-heum;Jang, Si-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.69-71
    • /
    • 2022
  • Today, the AI market is very large due to the development of AI. Among them, the most advanced AI is image detection. Thus, there are many object detection models using YOLOv5.However, most object detection in AI is focused on detecting objects that are stereotyped.In order to recognize such unstructured data, the object may be recognized by learning and filtering the object. Therefore, in this paper, a fire monitoring system using YOLOv5 was designed to detect and analyze unstructured data fires and suggest ways to improve the fire object detection model.

  • PDF

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Probabilistic Graph Based Object Category Recognition Using the Context of Object-Action Interaction (물체-행동 컨텍스트를 이용하는 확률 그래프 기반 물체 범주 인식)

  • Yoon, Sung-baek;Bae, Se-ho;Park, Han-je;Yi, June-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2284-2290
    • /
    • 2015
  • The use of human actions as context for object class recognition is quite effective in enhancing the recognition performance despite the large variation in the appearance of objects. We propose an efficient method that integrates human action information into object class recognition using a Bayesian appraoch based on a simple probabilistic graph model. The experiment shows that by using human actions ac context information we can improve the performance of the object calss recognition from 8% to 28%.

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm (평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적)

  • Kim Jong-Hun;Cho Kyeum-Rae;Lee Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.