• 제목/요약/키워드: Large Deformation Finite Element Method

검색결과 290건 처리시간 0.027초

지지대 형상에 따른 단엽식 고분자 판막의 비선형 해석 (Nonlinear Analysis of the Monoleaflet Polymer Valve According to Shape of Supporting Members)

  • 한근조;안성찬;심재준;김성윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.748-751
    • /
    • 2001
  • Monoleaflet polymer artificial heart valve was known to show remarkable improvement in antithrombosis and pressure drop compared with other type of artificial valve. In this investigation monoleaflet the vertical and horizontal deflection pattern of polymer heart valve with three types of supporting members straight member, and two curved members was analysed using the large deformation nonlinear finite element method.

  • PDF

지지대 형상에 따른 단엽식 고분자 판막의 비선형 해석 (Nonlinear Analysis of the Monoleaflet Polymer Valve according to Shape of Supporting Members)

  • 한근조;안성찬;심재준;김성윤
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.120-124
    • /
    • 2003
  • Monoleaflet polymer artificial heart valve was known to show remarkable improvement in antithrombosis and pressure drop compared with other type of artificial valve. In this investigation of monoleaflet heart valve the vertical and horizontal deflection pattern of polymer heart valve with three types of supporting members, straight member and two curved members were analysed using the large deformation nonlinear finite element method.

대변형 탄소성 접촉문제에 관한 연구 (A Study on the Elastic-Plastic Contact Problem for Large Deformation)

  • 전병희;김동원
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

유한요소법에 의한 평판의 용접 변형에 관한 기초적 연구 (A Fundamental Study on the Welding Deformation of Plate by Using F.E.M.)

  • 방한서;고민성;방희선
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.1-6
    • /
    • 1997
  • When structures are constructed by welding, heat conduction brings welding deformation. This is accompanied by complicated mechanical phenomenon such as material nonlinear and geometric nonlinear behavior. Hitherto, the research of welding deformation has been accomplished by an analytical method and experimental data in Korea. In this paper, the computer program by F.E.M.(finite element method) which could analyze the deformation of thin plate considering phenomena(both material and geometric nonlinear behavior) has been developed and verified. The production mechanism and characteristics in the welding deformation of plate are studied by the results.

  • PDF

탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 - (Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition -)

  • 심현보;정완진;양동열
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1129-1137
    • /
    • 1990
  • 본 연구에서 사용된 유한요소 방정식은 국부 질점좌표계(natural convected coordinate system)를 이용하여 변형을 묘사하는 대변형을 고려한 탄소성 증분 수식을 사용하였고, 국부 질점 좌표계를 사용함으로써 변형도 성분이나 구성 방정식의 성분들 에 대한 좌표 변환 과정을 생략할 수 있다. 재료는 수직 이방성으로 가정하였다.

대변형 탄소성유한요오법에 의한 재료의 연화현상을 고려한 파괴거동해석 (Finite Element Method for Failure Analysis Considering Large Deformation and Strain Softening)

  • 김영민
    • 한국지반공학회지:지반
    • /
    • 제13권2호
    • /
    • pp.29-38
    • /
    • 1997
  • 암석과 같은 지반재료를 전단하게 되면 응력-변형률관계에서 변형률연화현상이 관찰되어진다. 변형률연화현상은 지반공학문제에서 논하고 있는 파괴거동현상과 밀접한 관계가 있으므로 그 거동을 묘사할 수 있는 수치해석방법의 확립이 중요하다. 본 논문에서는 대변형 탄소성유한요소법을 이용하여 지반재료의 파괴거동를 묘사하기 위해서 재료의 연화성질을 도입하여 해석하는 경우, 고려해야 할 요소의 선택, 배치, 초기부정의 영향, 미소변형과 대변형 해석의 차이, 최고점 하중후의 하중제어를 하기 위한 변위제어 및 압력제어의 차이에 대하여 검토하였다.

  • PDF

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.

선향적저감적분을 이용한 탄소성 유한요소법에 의한 블레이드의 성형 해석 (Analysis of Blade Forming using an Elasto-Plastic Finite Element Method with Directional Reduced Integration)

  • 최태훈;허훈
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.365-374
    • /
    • 1995
  • Numerical simulation of blade forming is carried out as stretch forming by an elasto-plastic finite element method. The method adopts a Lagrangian formulation, which incorporates large deformation and rotation, with a penalty method to treat the contact boundary condition. Numerical integration is done with a directional reduced integration scheme to avoid shear locking. The numerical results demonstrates various final shapes of blades which depend on the variation of the stretching force. The strain distributions in deformed blades are also obtained with the variation of the stretching force.

  • PDF

Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측 (Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming)

  • 김성겸;황세윤;이장현
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

재생커널입자법을 이용한 체적성형공정의 해석 (Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF